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In this paper we consider the initial-boundary value problem for a nonlinear equation induced with 

respect to the mathematical models in mass production process with the one sided spring boundary 

condition by boundary feedback control. We establish the asymptotic behavior of solutions to this 

problem in time, and give an example and simulation to illustrate our results. Results of this paper are 

able to apply industrial parts such as a typical model widely used to represent threads, wires, magnetic 

tapes, belts, band saws, and so on.  
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I. Introduction 

 

In this paper, we consider the following initial-boundary value problem for a nonlinear Kirchhoff type 

equation with one sided spring boundary conditions by boundary feedback control with respect to the 

mathematical models in mass production process :  

 

 𝑢𝑡𝑡 (𝑥, 𝑡) − 𝑎(𝑥)𝐵(∥ ∇𝑢(𝑡) ∥2)Δ𝑢(𝑥, 𝑡) + 𝐾𝑢(𝑥, 𝑡) (1) 

         +𝜆𝑢𝑡(𝑥, 𝑡) + 𝜂𝑢𝑥𝑡 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ (0,1) × (0, 𝑇); 

 𝑢(0, 𝑡) = 0,    𝑎(1)𝑢𝑥(1, 𝑡) + 𝑕1𝑢(1, 𝑡) = 𝑠(𝑡), 𝑡 ∈ (0, 𝑇); (2) 

 𝑢(𝑥, 0) = 𝑢0(𝑥),    𝑢𝑡(𝑥, 0) = 𝑢1(𝑥), 𝑥 ∈ (0,1), (3) 

 where 𝐾, 𝜂  and 𝑕1  are given nonnegative constants; 𝜆,  and 𝑇 , the given positive constants; 

𝑢0 , 𝑢1 , 𝑎(𝑥), and 𝐵, the given functions; and 𝑢(𝑥, 𝑡), the transversal displacement of the strip at 

spatial coordinate 𝑥 and time 𝑡. The hypotheses on these functions for our purpose will be specified 

later. (1) describes the nonlinear vibrations of an elastic string. And also, (2) means both ends 

attached with springs depends on spring constant 𝑕1. In (1), 𝜆𝑢𝑡  is called a weak damping term and 

we call −𝜆Δ𝑢𝑡  instead of 𝜆𝑢𝑡  a strong damping term. We also consider the following control function 

in (2) as a feedback control:  
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 𝑠(𝑡) = −𝑕2𝑢𝑡(1, 𝑡) − 𝑕3sin𝑡,    𝑡 ≥ 0, (4) 

 

 where 𝑕2 and 𝑕3 are positive constants under the condition sin𝑡 < 2𝐵(∥ ∇𝑢(𝑡) ∥2)cos𝑡. 

 

Mathematical models in mass production process, control engineering, and biological system 

are often governed by nonlinear Kirchhoff type equations. The purpose of this paper is to study the 

existence and uniqueness of solutions of the model system with mixed boundary conditions. Moreover 

stability problems which investigate decay estimates of energy for the model system, are given. 

Recently, the important problem of vibration suppression of axially moving string-like continua 

has received attention by our results [10, 11, 12, 13]. Axially moving string is a typical model widely 

used to represent threads, wires, belt, magnetic tape, cables and band-saws, especially when the 

subject concerned is long and narrow enough. Several our results have derived and studied linear and 

nonlinear mathematical models which describe the movement of such systems [10, 11]. And also, 

some our result has derived and studied some engineering system with respect to boundary feedback 

control [12]. 

Its original equation is given by  

 

 𝜌𝑕
∂2𝑢

∂𝑡2 = (𝑝0 +
𝐸𝑕

2𝐿
 ‍

𝐿

0
(
∂𝑢

∂𝑥
)2𝑑𝑥)

∂2𝑢

∂𝑥2 (5) 

 

 for 0 < 𝑥 < 𝐿, 𝑡 ≥ 0, where 𝑢 = 𝑢(𝑥, 𝑡) is the lateral displacement at the space coordinate 𝑥 and 

time 𝑡; 𝐸, the‍ young’s‍modulus;‍ 𝜌, the mass density; 𝑕, the cross section area; 𝐿, the length; and 

𝑝0 , the initial axial tension. This equation was first introduced by Kirchhoff [14](See Carrier[5]); hence, 

(5) is known as the Kirchhoff-type equation. When 𝐾 = 𝜆 = 𝜂 = 0 and the Cauchy or mixed problem 

for (1) has been studied by many authors(see [18, 8]). In particular, many authors have investigated 

the nonlinear wave equation when 𝑎(𝑥) ≡ 1 without the coriolis force term (i.e., 𝜂 = 0) acting on the 

system (1)-(3)(see [18, 8, 21, 7, 2, 16, 17]). 

 

On the other hand, in Chen et al.[6] investigated the equation  

 

 
∂2𝑢

∂𝑡2 + 2𝛾
∂2𝑢

∂𝑡 ∂𝑥
+ (𝛾2 − 1)

∂2𝑢

∂𝑥2 =
3𝐸

2

∂2𝑢

∂𝑥2
 
∂𝑢

∂𝑥
 

2

, (6) 

 

 where 𝑢(𝑥, 𝑡) is the transverse displacement at the axial coordinate 𝑥 and time 𝑡; 𝛾, the axial 

speed; and 𝐸,  the‍ Young’s‍ modulus‍ (all‍ dimensionless).‍ Furthermore,‍ Aassila‍ and‍ Kaya[1]‍

investigated the system (1)-(3) with 𝑎(𝑥) ≥ 𝑎0 > 0  and 𝑎(𝑥), 𝑎𝑥(𝑥) ∈ 𝐿∞(Ω),  and the Dirichlet 

boundary condition without the coriolis force and forcing and dissipative terms. In case of system with 

mixed boundaries, some systems with various boundaries are studed by Bentsman and Hong[3], 

Vitillaro[20], Bociu and Lasiecka[4] and so on. In addition, Long[16] investigated the system (1)-(3) with 

𝑎(𝑥) = 1 and without the coriolis force. The authors mentioned above have only studied the local 

existence(no global existence) of solutions to their problems because of the nonlinearity of the term 

𝑎(𝑥)𝐵(∥ ∇𝑢 ∥2). And also, many researchers(See [3, 9]) investigated the asymptotic behavior of a 

solution for various practical systems by using some simulation. 

The first objective of this paper is to verify the exponential decay for solutions to the system 

(1)-(3) with the boundary feedback control; For the guarantee of the energy decay of solutions to the 

system (1)-(3), we give the global existence result for the main system. Lastly, we try to show the 

system with controlled free boundary rather than without control has more stabilized vibration at the 

boundary by using simulation results. 

 

II. Preliminaries 

 

Throughout the paper, we will abbreviate to some notations Ω = (0,1), 𝑇 > 0, 𝐿𝑝 = 𝐿𝑝(Ω), 𝐻1 =

𝐻1(Ω), 𝐻2 = 𝐻2(Ω), where 𝐻1, 𝐻2 are the usual Sobolev spaces on Ω. 
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The norm in 𝐿2 is denoted by ∥⋅∥. We also denote by 〈⋅,⋅〉 the scalar product in 𝐿2 or pair of 

dual scalar product of continuous linear functional with an element of a function space. We denote by 

∥⋅∥𝑋  the norm of a Banach space 𝑋 and by 𝑋′ the dual space of 𝑋. We denote by 𝐿𝑝(0, 𝑇; 𝑋), 

1 ≤ 𝑝 ≤ ∞ for the Banach space of the real functions 𝑢: (0, 𝑇) → 𝑋 measurable, such that  

 ∥ 𝑢 ∥𝐿𝑝 (0,𝑇;𝑋)= ( ‍
𝑇

0
∥ 𝑢(𝑡) ∥𝑋

𝑝
𝑑𝑡)1/𝑝     for1 ≤ 𝑝 < ∞, 

 and  

 ∥ 𝑢 ∥𝐿∞(0,𝑇;𝑋)= e𝑠𝑠𝑠𝑢𝑝
0<𝑡<𝑇

∥ 𝑢(𝑡) ∥𝑋     for𝑝 = ∞. 

And also we put for some positive 𝑀,  

 𝑊(𝑀, 𝑇) = {𝑣 ∈ 𝐿∞(0, 𝑇; 𝐻2): 𝑣𝑡 ∈ 𝐿∞(0, 𝑇; 𝐻1(Ω)), 𝑣𝑡𝑡 ∈ 𝐿∞(0, 𝑇; 𝐿2(Ω)), (7) 

 ∥ 𝑣 ∥𝐿∞(0,𝑇;𝐻2(Ω))≤ 𝑀, ∥ 𝑣𝑡 ∥𝐿∞(0,𝑇;𝐻1)≤ 𝑀, ∥ 𝑣𝑡𝑡 ∥𝐿∞(0,𝑇;𝐿2)≤ 𝑀, (8) 

 |𝑢(1, 𝑡)| ≤ 𝑀, |𝑢𝑡(1, 𝑡)| ≤ 𝑀}. (9) 

 

Lemma 2.1 (𝑏1, 𝑇𝑕𝑒𝑜𝑟𝑒𝑚6.2.1, 𝑝. 137)  There exists the Hilbert orthonormal base {𝑤 𝑗 } of 𝐿2 

consisting of the eigenfunctions 𝑤 𝑗  corresponding to the eigenvalue 𝜆𝑗  such that  

 0 < 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑗 ≤ ⋯ , lim
𝑗→+∞

𝜆𝑗 = +∞ (10) 

 Furthermore, the sequence {𝑤 𝑗 / 𝜆𝑗 } is also the Hilbert orthonormal base of 𝐻1. On the other hand, 

we have also 𝑤 𝑗  satisfying the following boundary value problem:  

 −Δ𝑤 𝑗 = 𝜆𝑗 𝑤 𝑗 , 𝑖𝑛Ω, (11) 

 

 𝑎(1)𝑤 𝑗𝑥 + 𝑕1𝑤 𝑗 (1) = 0, 𝑤 𝑗 ∈ 𝐶∞(Ω). (12) 

 

 

Lemma 2.2 (𝑎1, 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑𝐼𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑡𝑕𝑒𝑜𝑟𝑒𝑚)  The embedding 𝑉°𝐶0(𝛺) is compact, where 

∥ 𝑣 ∥𝑉=∥ 𝛻𝑣(𝑡) ∥ and  

 ∥ 𝑣 ∥𝐶0(Ω)≤  2 ∥ 𝑣 ∥𝑉 ,    𝑓𝑜𝑟𝑣 ∈ 𝑉. (13) 

 

The proof of Lemma 2.2 is also straightforward and we omit it. 

 

III. The existence and uniqueness theorem of solution 

 

 We make the following assumptions: 

 

(𝐴1)𝑕1 ≥ 0, 𝐾 ≥ 0, 𝜆 > 0, 𝜂 ≥ 0  and  2𝜆 ≤ 𝜂; 

 

(𝐴2)𝑎(𝑥) > 0  for  all 𝑥 ∈ Ω, 𝑎(𝑥) ∈ 𝐿∞(Ω), 𝑎𝑥(𝑥) ∈ 𝐿∞(Ω); 

 

(𝐴3)0 < 𝑙1 ≤ e𝑠𝑠𝑖𝑛𝑓0≤𝑥≤1𝑎(𝑥), e𝑠𝑠𝑠𝑢𝑝0≤𝑥≤1𝑎(𝑥) ≤ 𝐿1 , 𝐿1(< +∞) > 0; 

 

(𝐴4)0 < 𝑙2 ≤ e𝑠𝑠𝑖𝑛𝑓0≤𝑥≤1𝑎𝑥(𝑥), e𝑠𝑠𝑠𝑢𝑝0≤𝑥≤1𝑎𝑥(𝑥) ≤ 𝐿2 , 𝐿2(< +∞) > 0; 

 

(𝐴5)𝐵 ∈ 𝐶1(ℝ+), 𝐵(𝜏) ≥ 𝑏0 > 0,   𝐵′(𝜏) < 𝛿, where 𝛿  is  a positive constant, 
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0 < 𝜏 ≤∥ ∇𝑢(𝑡) ∥2 for 0 ≤ 𝑡 ≤ 𝑇; 

 

(𝐴6)𝐾0 = 𝐾0(𝑀, 𝑇) = sup0≤𝜏≤𝑀2𝐵(𝜏) > 0 for 0 ≤ 𝑡 ≤ 𝑇. 

 

Theorem 3.1   (Global Existence) 

Let 𝐵: [0, +∞] → [0, +∞] satisfy the non-degeneracy condition (𝑖. 𝑒. 𝐵(∥ ∇𝑢0 ∥2) > 0). Let us 

assume that (𝐴1)-(𝐴6) hold and initial data (𝑢0 , 𝑢1) ∈ 𝐻2(Ω) × 𝐻1(Ω). 

Then there exists a positive number 𝑀 for every 𝑇 > 0 such that the system (1)-(3) admits a 

unique global solution 𝑢 in 𝑊(𝑀, 𝑇).  

 

Proof. By‍using‍Galerkin’s‍approximation,‍Lemma‍2.1,‍Lemma‍2.2‍and‍a‍ routine‍procedure‍

similar to that of cite  [10], we can the global existence result for the solution subject to (1)-(3) under 

the assumptions(𝐴1)-(𝐴6).  

 

Remark 3.2  In case of system using strong damping term instead of weak damping term, we 

can easily get the same result of solutions guaranteed by the boundedness of 𝑅𝑚 (𝑡) which is using 

the above proof.  

 

Now we introduce an example to illustrate Theorem 3.1 as follows:  

Example 3.3  We consider the following nonlinear wave equation with spring boundary 

conditions  

 𝑢𝑡𝑡 (𝑥, 𝑡) − exp 𝑥  ∥ ∇𝑢 ∥2 Δ𝑢(𝑥, 𝑡) + 𝑢(𝑥, 𝑡) + 𝑢𝑡(𝑥, 𝑡) + 𝑢𝑥𝑡 (𝑥, 𝑡) = 0 

 𝑖𝑛   (𝑥, 𝑡) ∈ (0,1) × (0,∞), 

 𝑢(0, 𝑡) = 0, exp 1 𝑢𝑥(1, 𝑡) = −𝑢(1, 𝑡) + 𝑠(𝑡) 𝑜𝑛 (0,∞), 

 𝑢(𝑥, 0) = exp  −64  𝑥 −
1

2
 

2

 , 𝑢𝑡(𝑥, 0) = 0 𝑖𝑛 (0,1), 

 where 𝛿(> 0) is a constant. We can choose the suitable constants 𝑕2 , 𝑕3 of 𝑠(𝑡) in (4). 

Actually, the above example satisfies the assumptions (𝐴1)-(𝐴6) and the given conditions for 

existence. Therefore, its global unique existence is guaranteed by Theorem 3.1.  

 

 

IV. Asymptotic Behavior 

 

In this section, we study the asymptotic behavior of the generalized energy as 𝑡 → +∞ 

 
𝐹(𝑡) =

1

2
 ∥ 𝑢𝑡(𝑡) ∥2+  ‍

1

0
𝑎(𝑥)𝐵(∥ ∇𝑢(𝑡) ∥2)|∇𝑢(𝑥, 𝑡)|2𝑑𝑥 + 𝐾 ∥ 𝑢(𝑡) ∥2 

+
𝑕1𝑏0

2
|𝑢(1, 𝑡)|2 + 𝑕3𝑏0𝑢(1, 𝑡)sin𝑡,

 (14) 

 where 𝑢 is the unique solution of the system (1)-(3) given by Theorem 3.1. 

To continue the proof, we need to introduce three new functionals  

 𝐸0(𝑡) =
1

2
 ‍

1

0
 |𝑢𝑡(𝑡)|2 + |∇𝑢(𝑡)|2 𝑑𝑥, (15) 

 𝐸(𝑡) =
1

2
 ‍

1

0
 |𝑢𝑡(𝑡)|2 + 𝑎(𝑥)𝐵(∥ ∇𝑢(𝑡) ∥2)|∇𝑢(𝑥, 𝑡)|2 + 𝐾|𝑢(𝑡)|2 𝑑𝑥, (16) 

 𝐹(𝑡) = 𝐸(𝑡) +
𝑕1𝑏0

2
|𝑢(1, 𝑡)|2 + 𝑕3𝑏0𝑢(1, 𝑡)sin𝑡. (17) 

 

In general, we say that 𝐸0(𝑡) is the kinetic energy and 𝐸(𝑡) is the energy including not only 

kinetic facts but also potential facts. 
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Theorem 4.1   (Energy Decay) 

Let 𝑞 > 𝜂 + 𝐿1𝛿 ≥ 0 and 𝜆 ≥
𝐿2

2𝐾0
2

𝐿1𝛿
≥ 0, and suppose that every definition and hypothesis in 

the previous chapter holds. Then, the solution 𝑢(𝑥, 𝑡) of the system (1)-(3) satisfies the following 

energy decay estimates: There exists a positive constant 𝐶4 such that  

 𝐸 𝑡 ≤ 𝛼1𝐸0 0 exp −𝐶4𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0. 

 

Proof.  Multiplying the first equation in the system (1)-(3) by 𝑢𝑡  and applying the boundary condition 

(2), we have  

 
1

2

𝑑

𝑑𝑡
∥ 𝑢𝑡(𝑡) ∥2+  ‍

1

0
𝑎𝑥(𝑥)𝐵(∥ ∇𝑢(𝑡) ∥2)𝑢𝑡(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡)𝑑𝑥 

 +
1

2

𝑑

𝑑𝑡
 ‍

1

0
𝑎(𝑥)𝐵(∥ ∇𝑢(𝑡) ∥2)𝑢𝑥(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡)𝑑𝑥 

 −
1

2
 ‍

1

0
𝑎(𝑥)(𝐵(∥ ∇𝑢(𝑡) ∥2))′𝑢𝑥(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡)𝑑𝑥 

 +
𝑕1

2
𝐵(∥ ∇𝑢(𝑡) ∥2)

𝑑

𝑑𝑡
|𝑢(1, 𝑡)|2 + 𝑕3𝐵(∥ ∇𝑢(𝑡) ∥2)

𝑑

𝑑𝑡
(𝑢(1, 𝑡)sin𝑡) 

 +𝑕2𝐵(∥ ∇𝑢(𝑡) ∥2)|𝑢𝑡(1, 𝑡)|2 − 𝑕3𝐵(∥ ∇𝑢(𝑡) ∥2)𝑢(1, 𝑡)cos𝑡 

 +
𝐾

2

𝑑

𝑑𝑡
∥ 𝑢(𝑡) ∥2+ 𝜆 ∥ 𝑢𝑡(𝑡) ∥2+ 𝜂  ‍

1

0
𝑢𝑥𝑡 (𝑥, 𝑡)𝑢𝑡(𝑥, 𝑡)𝑑𝑥 = 0. 

 

Dividing both sides by 𝐵(∥ ∇𝑢(𝑡) ∥2) since 𝐵(∥ ∇𝑢(𝑡) ∥2) > 0, we get  

 
1

2𝐵(∥∇𝑢(𝑡)∥2)

𝑑

𝑑𝑡
 ∥ 𝑢𝑡(𝑡) ∥2+  ‍

1

0
𝑎(𝑥)𝐵(∥ ∇𝑢(𝑡) ∥2)|∇𝑢(𝑥, 𝑡)|2𝑑𝑥 + 𝐾 ∥ 𝑢(𝑡) ∥2  

 +
𝑑

𝑑𝑡
 
𝑕1

2
|𝑢(1, 𝑡)|2 + 𝑕3𝑢(1, 𝑡)sin𝑡  

 +
1

2𝐵(∥∇𝑢(𝑡)∥2)
 ‍

1

0
𝑎𝑥(𝑥)𝐵(∥ ∇𝑢(𝑡) ∥2)𝑢𝑡(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡)𝑑𝑥 

 −
1

4𝐵(∥∇𝑢(𝑡)∥2)
 ‍

1

0
𝑎(𝑥)(𝐵(∥ ∇𝑢(𝑡) ∥2))′𝑢𝑥(𝑥, 𝑡)𝑢𝑥(𝑥, 𝑡)𝑑𝑥 

 +𝑕2|𝑢𝑡(1, 𝑡)|2 − 𝑕3𝑢(1, 𝑡)cos𝑡 

 +
1

2𝐵(∥∇𝑢(𝑡)∥2)
 𝜆 ∥ 𝑢𝑡(𝑡) ∥2+ 𝜂  ‍

1

0
𝑢𝑥𝑡 (𝑥, 𝑡)𝑢𝑡(𝑥, 𝑡)𝑑𝑥  

 = 0. 

From the assumptions (𝐴3)-(𝐴6) and the Cauchy-Schwarz inequality, we deduce that  

 
1

2𝐵(∥∇𝑢(𝑡)∥2)

𝑑

𝑑𝑡
 ∥ 𝑢𝑡(𝑡) ∥2+  ‍

1

0
𝑎(𝑥)𝐵(∥ ∇𝑢(𝑡) ∥2)|∇𝑢(𝑥, 𝑡)|2𝑑𝑥 + 𝐾 ∥ 𝑢(𝑡) ∥2  

 +
𝑑

𝑑𝑡
 
𝑕1

2
|𝑢(1, 𝑡)|2 + 𝑕3𝑢(1, 𝑡)sin𝑡  

 +
1

2𝐵(∥∇𝑢(𝑡)∥2)
  𝜆 − 𝜀𝐿2𝐾0 −

𝜂

2
 ∥ 𝑢𝑡(𝑡) ∥2+  𝑞 −

𝐿2𝐾0

2𝜀
−

𝜂

2
 ∥ ∇𝑢(𝑡) ∥2  

 −
1

2𝐵(∥∇𝑢(𝑡)∥2)
 𝑞 +

𝐿1𝛿

2
−

𝐿2𝐾0

4𝜀
 ∥ ∇𝑢(𝑡) ∥2 

 +
1

2𝐵(∥∇𝑢(𝑡)∥2)
𝑕3𝑢(1, 𝑡)sin𝑡 ≤ 0, 

where sin𝑡 < 2𝐵(∥ ∇𝑢(𝑡) ∥2)cos𝑡. 
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Letting 
𝐿2𝐾0

2𝑞−𝜂
≤ 𝜀 ≤

𝐿2𝐾0

2(𝜂+𝐿1𝛿)
 by the condition for 𝑞  of Theorem 4.1 which is the positive 

constant and using the global existence results(i.e., ∥ ∇𝑢(𝑡) ∥≤ 𝑀), we have  

 
1

2𝐵(∥∇𝑢(𝑡)∥2)

𝑑

𝑑𝑡
 ∥ 𝑢𝑡(𝑡) ∥2+  ‍

1

0
𝑎(𝑥)𝐵(∥ ∇𝑢(𝑡) ∥2)|∇𝑢(𝑥, 𝑡)|2𝑑𝑥 + 𝐾 ∥ 𝑢(𝑡) ∥2  

 +
𝑑

𝑑𝑡
 
𝑕1

2
|𝑢(1, 𝑡)|2 + 𝑕3𝑢(1, 𝑡)sin𝑡  (18) 

 +
1

2𝐵(∥∇𝑢(𝑡)∥2)
 𝐶1 ∥ 𝑢𝑡(𝑡) ∥2+ 𝐶2 ∥ ∇𝑢(𝑡) ∥2+ 𝑕3𝑢(1, 𝑡)sin𝑡 ≤ 0, 

 where 𝐶1 = 𝜆 − 𝜀𝐿2𝐾0 −
𝜂

2
, 𝐶2 = 𝑞 −

𝐿2𝐾0

2𝜀
−

𝜂

2
 and 𝐶1 , 𝐶2  are nonnegative constants from the 

assumptions of Theorem 4.1. 

Multiplying (18) by the Kirchhoff part 𝐵(∥ ∇𝑢(𝑡) ∥2), we get the following result from (𝐴5): 

 

 

1

2

𝑑

𝑑𝑡
 ∥ 𝑢𝑡(𝑡) ∥2+  ‍

1

0
𝑎(𝑥)𝐵(∥ ∇𝑢(𝑡) ∥2)|∇𝑢(𝑥, 𝑡)|2𝑑𝑥 + 𝐾 ∥ 𝑢(𝑡) ∥2 

        +
1

2

𝑑

𝑑𝑡
 𝑕1𝑏0|𝑢(1, 𝑡)|2 + 𝑕3𝑢(1, 𝑡)sin𝑡 

        +
𝐶3

2
 ∥ 𝑢𝑡(𝑡) ∥2 +∥ ∇𝑢(𝑡) ∥2+ 𝑕3𝑢(1, 𝑡)sin𝑡 ≤ 0,

 

 where 𝐶3 = min 1, 𝐶1 , 𝐶2 . 

From (14)-(17), we deduce that  

 
𝑑

𝑑𝑡
𝐹(𝑡) +

𝐶3

2
𝐸0(𝑡) ≤ 0. (19) 

 

 

Proposition 1   (Energy equivalence) 

 𝛼0𝐸0 𝑡 ≤ 𝐹 𝑡 ≤ 𝛼1𝐸0 𝑡 𝑓𝑜𝑟𝑎𝑙𝑙𝑡 ≥ 0, 

where 𝛼0 = min 1, 𝑙1𝑏0 + 𝐾  and 𝛼1 = max 1, 𝐾, 𝐿1𝐾0, 𝑏0 𝑕1 + 1 𝑀 . 

 

Proof. By the assumptions (𝐴3) and (𝐴6), we have  

 max 1, 𝐾, 𝐿1𝐾0, 𝑏0(𝑕1 + 1)M 𝐸0(𝑡) ≥ F(𝑡). 

And also, applying the assumptions (𝐴3) and (𝐴6), Lemma 2.2, and the positivity of 
𝑕1𝑏0

2
|𝑢(1, 𝑡)|2, we 

deduce  

 min 1, 𝑙1𝑏0 + 𝐾 𝐸0(𝑡) ≤ 𝐹(𝑡). 

 

 

From (19) and Proposition 1, we get  

 𝐸0 𝑡 ≤ 𝐸0 0 exp −𝐶4𝑡 for all 𝑡 ≥ 0  and  as  𝑡 → +∞, 

where 𝐶4 is a positive constant. 

 

From Proposition 1, we get 𝐹(𝑡) ≤ 𝛼1𝐸0(𝑡). This implies that  

 𝐹(𝑡) ≤ 𝛼1𝐸0(0)exp{−𝐶4𝑡}    for all 𝑡 ≥ 0  and  as  𝑡 → +∞. 

 

By the positivity of 
𝑕1𝑏0

2
|𝑢(1, 𝑡)|2, we also deduce  

 𝐸(𝑡) ≤ 𝛼1𝐸0(0)exp{−𝐶4𝑡}    for all 𝑡 ≥ 0  and  as  𝑡 → +∞. 

 

V. Numerical Results 

Now, we try to deal with numerical simulation results for the special system under some assumptions 

of‍Example‍3.3‍In‍the‍numerical‍results‍section,‍we‍consider‍two‍parts,‍that‍is,‍simulation‍of‍solution’s‍
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shapes controlled system or not in time with respect to energy decay of solutions on the free boundary. 

5.1  Solution’s Shapes in time 

 When it comes to the numerical results of solutions, our purpose is showing solution for 

3-dimension(𝑖. 𝑒. u(x, t), x, t) in the system. We consider that boundaries exp 1 𝑢𝑥(1, t) = −𝑢(1, 𝑡) +

s(t) at 𝑥 = 1 in the system as we know. The system of special case makes with special boundary 

feedback control −𝑢𝑡(1, 𝑡) − sin𝑡.‍ Solution’s‍ shapes‍ in‍ full-time and 𝑡 = 1 including boundaries are 

given in Figures 1 

 
Figure‍ ‍ 1:‍ ‍ Solution’s‍shapes on the whole time with spatial parts by boundary feedback control 

 

5.2  Simulation of the main system with boundary controlled or not 

 In this section, we try to compare main system with boundary feedback control and main 

system with boundary feedback control. The aim of this section is showing the system with controlled 

free boundary rather than without control has more stabilized vibration at the boundary. The system 

with boundary feedback control (See Figure 1) has stable solution and relating energy unlike the 

system without boundary control (See Figure 2).  
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Figure‍ ‍ 2:‍ ‍ One‍sided‍spring‍boundary‍solution’s‍shapes‍on‍the‍main‍system‍without‍boundary‍

feedback control 

 

 
Figure‍ ‍ 3:‍ ‍ One‍sided‍spring‍boundary‍solution’s‍shapes‍on‍the‍main‍system‍with boundary feedback 

control 

 

In Section 5, for the numerical results, we used the standard finite difference method(FDM) and 

MATLAB. 
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VI. Conclusions 

We dealt with analytical results and their numerical simulations. We established the global existence 

and uniqueness of weak solutions to this problem in time, and give an example and simulation to 

illustrate our results. Finally, we try to get the asymptotic behavior of energy and its simulation results. 

Actually, we get the result that the system with controlled free boundary rather than without control has 

more stabilized vibration at the boundary. These results are very useful, indeed, our results are able to 

apply industrial parts such as a typical model widely used to represent threads, wires, magnetic tapes, 

belts, band saws, and so on. 

References 

 
[1]  M. Aassila and D. Kaya, On Local Solutions of a Mildly Degenerate Hyperbolic Equation, J. Math. Anal. Appl., 238 

(1999), 418-428. 

 

[2] A. Arosio and S. Spagnolo,  Global solution to the Cauchy problem for a nonlinear hyperbolic equation, in “Nonlinear 

Partial Differential Equations and their Applications, Coll𝑒 ′ge de France Seminar", (H. Br𝑒 ′zis and J.-L. Lions, Eds.), 

Vol. IV, pp. 1-26, Research Notes Mathematics Vol. 129, Pitman, Boston, 1984. 

 

[3] J. Bentsman, K.-S. Hong, Transient Behavior Analysis of Vibrationally Controlled Nonlinear Parabolic Systems with 

Neumann Boundary Conditions, IEEE Transactions on Automatic Control, 38 (1993), 1603-1607. 

 

[4] L. Bociu, I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and 

damping, Journal of Differential Equations, 186 (2002), 259-298. 

 

[5] C.F. Carrier, On the vibration problem of elastic string, J. Appl. Math., 3 (1945), 151-165. 

 

[6] L. Chen, W. Zhao, H. Ding, On Galerkin Discretization of Axially Moving Nonlinear Strings, Acta Mechanica Solida 

Sinica, 22 (2009), 369-376. 

 

[7] R.W. Dickey, The initial value problem for a nonlinear semi-infinite string, Proc. Roy. Soc. Edinburgh Vol. 82 (1978), 

pp. 19-26. 

 

[8] Y. Ebihara, L.A. Medeiros, M.M. Miranda, Local solutions for a nonlinear degenerate hyperbolic equation, Nonlinear 

Analalysis, 10 (1986), 27-40. 

 

[9] K.-S. Hong, Asymptotic Behavior Analysis of a Coupled Time-Varying System: Application to Adaptive Systems, IEEE 

Transactions on Automatic Control, 42 (1997), 1693-1697. 

 

[10] D. Kim and I.H. Jung,  Asymptotic behavior of a nonlinear Kirchhoff type equation with spring boundary conditions , 

Computers and Mathematics with Applications  62 (2011), 3004–3014. 

 

[11] D. Kim, S. Kim and I.H. Jung,  Stabilization for the Kirchhoff type equation from an axially moving heterogeneous 

string modeling with boundary feedback control, Nonlinear Analysis: Theory, Methods and Applications  75 (2012), 

3598–3617. 

 

[12] D. Kim, Y.H. Kang J. B. Lee, G. R. Ko and I.H. Jung,  Stabilization of a nonlinear Kirchhoff equation by boundary 

feedback control, Nonlinear Analysis: Theory, Methods and Applications  75 (2012), 3598–3617. 

 

[13] D. Kim,  Stabilization for the viscoelastic Kirchhoff type equation with nonlinear source, East Asian Math. J.  32 

(2016), 117–128. 

 

[14] G. Kirchhoff, Vorlesungen über Mechanik, Teubner, Leipzig, 1983. 

 

[15] J.L. Lions, Quelques méthodes de résolution des problémes aux limies non linéaires, Dunod Paris Gauthier-Villars, 

1969. 

 

[16] N.T. Long, On the nonlinear wave equation 𝑈𝑡𝑡 − 𝐵(𝑡, ∥ 𝑈𝑥 ∥2)𝑈𝑥𝑥 = 𝑓(𝑥, 𝑡, 𝑈, 𝑈𝑥 , 𝑈𝑡) associated with the mixed 

homogeneous conditions, J. Math. Anal. Appl., 274 (2002), 102-123. 

 

[17] J.Y. Park and T.G. Ha, Existence and asymptotic stability for the semilinear wave equation with boundary damping 

and source term, J. Math. Phys., 49 (2008), 053511-053511-26 . 

 



Daewook Kim“International Journal of Innovation Engineering and Science Research” 

 
Volume 2 Issue 1 January 2018 
 

39|P a g e  

[18] S.I. Pohozaev, On a class of quasilinear hyperbolic equation, Math. USSR-Sb, 25 (1975), 145-158. 

 

[19] P.A. Raviart and J.M. Thomas, Introduction à l’analyse numérique des equations aux dérivées partielles, Masson 

Paris, 1983. 

 

[20] E. Vitillaro, Global existence for the wave equation with nonlinear boundary damping and the source terms, Journal of 

Differential Equations, 186 (2002), 259-298. 

 

[21] Y. Yamada, Some nonlinear degenerate wave equations, Nonlinear Analysis Vol. 10 (1987), pp. 1155-1168. 


