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The effect of adverse climate change is of major concern worldwide and several approaches are being developed 

to mitigate against anticipated economic and social disaster. Carbon emissions has been identified as a major 

contributor to the adverse climate change and following the Kyoto protocol , European countries have , through a 

caucus, effected a market to reward or fine members depending on their compliance position. The commodity for 

the market is the carbon emission credits. Stochastic models for pricing of options on these credits are 

considered in this paper. In particular, we determine the price basing on the Normal Inverse Gaussian and the 

Brownian Motion models. Maximum Likelihood Estimation is applied to determine model parameter estimates in 

each case. It is shown that the Normal Inverse Gaussian model has a better fit to the data but gives higher prices 

for a  given strike price , compared to the Brownian Motion model. 

 
Key Words:   Carbon Emission Credit, Brownian Motion, Kyoto Protocol Compliance, Normal Inverse Gaussian 

Distribution, Fourier Transform, Risk-Neutral Option Pricing. 

 

I. INTRODUCTION 

Greenhouse gas (GHG) emissions come from the burning of fossil fuels for energy (e.g. for electricity and 

transport). When oil, gas or coal burns, carbon contained within it combines with oxygen in the air to create 

carbon dioxide. Globally, almost 80% of GHG emissions come from human sources. Global GHG emissions grew 

by approximately 42% between 1990 and 2011, with the bulk growth occurring in emerging markets and 

developing countries. 

The release of GHGs and their increasing concentration in the atmosphere are already having an impact on the 

environment, human health and the economy. These impacts are expected to become more severe, unless 

concerted efforts to reduce emissions are undertaken.  Environmental impacts include the following. Annual 

temperatures are expected to rise, increased coastal flooding due to increased temperatures, heat waves that 

could result to forest fires and Shrinking water supplies. Human health impacts include high temperatures that 

may increase the risk of deaths from dehydration and heat stroke, an increase in water-, food-, vector- and 

rodent-borne diseases, cancer diseases that develop due to air pollution. Economic impacts include agriculture, 

forestry, tourism and recreation being affected by changing weather patterns and damage to infrastructure 

caused by extreme weather events. 

In order to address climate change globally, the Kyoto Protocol was introduced. The Kyoto Protocol is an 

international agreement linked to the United Nations Framework Convention on Climate Change, which 

commits its parties by setting international binding emission reduction targets. 

The Kyoto Protocol was adopted in Kyoto, Japan, on 11 December 1997 and entered into force on  16th 

February, 2005. Participating countries that have ratified the Kyoto Protocol have committed to cut GHG 

emissions.  The Kyoto Protocol sets binding emission reduction targets for participants. The goal of Kyoto was 

to see participants collectively reducing emissions of greenhouse gases by 5.2% below the emission levels of 

1990 by 2012. 
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Binding emissions reduction commitment for participants meant that the space to pollute was limited, and 

what is scarce and essential commands a price. Greenhouse gas emissions- most prevalently carbon dioxide-

became a new commodity. Kyoto Protocol now began to internalize what was now recognized as an unpriced 

externality. Since carbon dioxide is the principle greenhouse gas, people speak simply of trading in carbon. 

This leads us to the second, the flexible mechanisms of the Kyoto Protocol, based on the trade of 

emissions permits. Kyoto Protocol countries bound to targets have to meet them largely through domestic action- 

that is, to reduce their emissions onshore. But they can meet part of their targets through the “market-based 

mechanisms” that ideally encourage GHG abatement to start where it is most cost-effective- for example, in the 

developing world. Quite simply, it does not matter where emissions are reduced, as long as they are removed 

from the planet’s atmosphere. The Kyoto mechanisms are, InternationalEmissions Trading (IET), Clean 

Development Mechanism (CDM) and Joint Implementation (JI). 

Parties with commitments under the Kyoto Protocol that have accepted targets for limiting or reducing 

emissions are called Annex I parties. These countries are set a legally binding cut for GHG emission to 5.2% 

below their 1990 level. This reduction is to be attained in sum over all Annex I members over a five year 

compliance period which is from 2008 to 2012. The concrete implementation is as follows: Each Annex I member 

is assigned a certain Carbon dioxide gas amount, which equals to (5 years)*(country’s emission in 1990)*(1-

0.0052). This credit is measured in the so- called Assigned Amount Units (AAUs), corresponding to one ton of 

carbon dioxide. Each member faces penalties if its entire emission within the compliance period 2008-2012 

exceeds member’s total number of AAUs. 

The IET mechanism allows annex I members that have emission units to spare to sell the excess to 

annex I members that are over their targets. Therefore, the carbon allowances traded in IET mechanism are 

called AAUs. 

The CDMmechanism allows an Annex I member to implement an emission-reduction project in 

developing countries. Such projects can earn saleable certified emission reduction (CER) credits, each 

equivalent to one tonne of Carbon dioxide gas, which can be counted towards meeting Kyoto targets. 

 

II. LITERATURE REVIEW 

 

Carmona and Hinz(2011) examined the spot EUA returns that exhibit a volatility clustering feature and the 

carbon market system that is impacted by the announcements of CO2 emissions policies. They proposed a 

regime-switching jump diffusion model (RSJM) with a hidden Markov chain to capture not only a volatility 

clustering feature, but also the dynamics of the spot EUA returns that are influenced by change in the CO2 

emissions policies, and thereby altering jump arrivals. They concluded that RSJM is the best model to fit the 

price behavior of the carbon markets and to price its related derivatives.  

Chevallier, J. and Sevi B. (2014) argue that jumps need to be explicitly taken into account when modeling 

spot and future carbon price series. He says that there is evidence that suggests that carbon futures are a pure 

jump process without a continuous component and a relatively high activity index. The occurrence of jumps on 

the carbon market may be related to information disclosure about allocation, or changes in the perimeter of the 

scheme. He concludes  that derivatives models such as the models by Cont and Tankov (2004), and  the 

CGMY model (Carr et al. (2002)) would be plausible candidates, since these models accommodate a pure-

jump stochastic process with activity indices above unity, as found in the carbon futures data. 

Seifert et al(2007) explain that European call and put options are actively traded on EUA future contracts. 

Since 2006, trades of options maturing in December of each year (prior to 2012) have produced a term 

structure of option prices. It is noted that, whether or not traders are using Black-Scholes to price options on 

EUAs and future contracts,  it is important to have option price formulas based on underlying martingale with 

binary terminal value. 

Bolviken and Benth(2000) argued that traders of carbon emissions need to have a valid carbon dioxide 

spot price model so that it can be possible to value potential derivatives and so that carbon emitting companies 

can be able to better assess their production costs and support emissions-related investment decisions. They 

therefore presented a tractable stochastic equilibrium model reflecting stylized features of the emissions trading 

scheme and analyzed the resulting carbon spot price dynamics. Their main findings were that carbon prices do 

not have to follow any seasonal patterns, discounted prices and should possess the martingale property, and 

an adequate carbon price process should exhibit a time- and price- dependant volatility structure. 
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Carmona and Hinz (2011) argue that martingales finishing at two-valued random variables can be 

considered as basic building blocks which form the risk-neutral futures price dynamics. They therefore suggest 

a model for two-valued martingales, flexible in terms of time- and space changing volatility and capable to 

match the observed historical or implied volatility of the underlying future. 

However, Bolviken and Benth (2000), argue that the family of Normal Inverse Gaussian (NIG) distribution 

is able to portray stochastic phenomena that have heavy tails or are strongly skewed. In addition to that,  NIG 

distributions are not confined to the positive half axis. Therefore, with the NIG distribution the financial analyst 

has at its disposal a model that can be adapted to many different shapes while the distribution of sums of 

independent random variables are still trivial to compute. 

 

III. METHODOLOGY 

3.1 .1 Levy Process 

Definition 1.1  A cadlag real valued stochastic process  such that  is called a Levy 

Process if it has stationary independent increments and is stochastically continuous. 

Brownian motion 

The Brownian motion is a Levy process that has a drift. The standard Browniam motion follows a normal 

distribution with mean μ  and variance σ
2
 . 

3.1.2  Normal Inverse Gaussian process (NIG) 

The Normal inverse Gaussian process (NIG) is a Levy process that has normal inverse Gaussian 

distributed increments. Specifically, has a distribution with parameters 

 and . 

The  distribution has a probability density function 

 

Where 

 

is the modified Bessel function of the third kind, while the characteristic function is given by 
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Skewness=  

Kurtosis=  

3.1.3  Symmetric Normal Inverse Gaussian distribution 

The Symmetric NIG Levy process has symmetric NIG marginals.  The NIG distribution is symmetric when the 

skewness parameter . In this case, the density of a symmetric NIG is 

 

It follows from the equations of the mean, variance and kurtosis, that is mean, is variance and  is 

kurtosis. We will denote the distribution of symmetric NIG by  

The characteristic function for symmetric NIG is  

                                     (i) 

By an inspection of the characteristic function we can see that the characteristic generator of symmetric Normal 

inverse Gaussian distribution is given by 

                                                (ii) 

where,  
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We denote by  the price process of a future contract with maturity date T written on the allowance 

price. Given the digital nature of the terminal allowance price,  the central object of our study is the event  

 of non-compliance which settles the -dichotomy of the terminal future prices by . 

Furthermore, a standard no-arbitrage argument shows that the future prices  needs to be a 

martingale for the spot martingale measure ,Q.   Hence, the problem of allowance price modeling reduces to the 

appropriate choice of the martingale 

 

We choose our starting point to be the non-compliance event  which we describe as the event where a 

hypothetic positive-valued random variable exceeds the boundary 1, say . If one denotes by 

the total pollution within the period which must be balanced against the total number of 

credits issued by the regulator, then the event of non-compliance should be given by which 

suggests that should be viewed as the normalized total emission . However in our modeling, we 

merely describe the non-compliance event. Strictly speaking, so any random variable  with 

, 

would do as well. On this account, we do not claim that represents the total normalized emission . So 

the allowance Spot price is given by the martingale 

                                  (1) 

.where At = St  in this case. simplifying the notation, we consider the normalized futures price process 

 

The random variable  is chosen from a suitable parameterized family of random variables. 

The random variable  modeled by geometric Brownian motion (gbm) is given by 

 

where  is a standard Brownian motion and is the volatility parameter.  Since  is a martingale 
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                          (2) 

and it solves the stochastic differential equation 

                                                   (3) 

[0, ]( )t t TS 

TS

TN F {0, } 1T NS 

[0, ]( )t t TS 

(1 | ), [0, ]Q

t N tA F t T  

TN F

T { 1}TN   

TE [0, ]T (0, )  

{ }TN E  

T /TE 

T

{ 1} { / 1}T TE    

T /TE 

{ 1}(1 | ), [0, ]
T

Q

t tA E F t T   

{ 1}: (1 | ), [0, ]
T

t
t t

S
a E F t T


   

T

T

2

0 0

1
,

2
0

T T

s s sdW ds

T e
  

  

tW  0,gbm  T

1 2

0
0 0

2

( )
T t

s s s

t T

s
t

a ds dW
a

ds

 



 
  

  
 
 

 



' 1( ( ))t t t tdS S Z dW   



Richard Onyino Simwa. “International Journal of Innovation Engineering and Science Research” 

 
Volume 2 Issue 2 March 2018 13|P a g

e  

where the positive valued function  is given by 

                                                (4) 

The martingale is a random variable taking only the values 0 and  and satisfies 

   (6) 

As an alternative model for  we introduce the geometric Levy process 

 

where  is a normal inverse Gaussian Levy process and ,  where  are i.i.d. 

If we specify the parameters at time t=1, the first two moments (expectation and variance) are  
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where   is a Poisson random measure and  is the 

compensated Poisson random measure associated to . The levy measure of  is 

. 

It follows from the Levy-Khintchine representation that the normal inverse Gaussian Levy process is a pure jump 

process.  

In the symmetric case (i.e., when ), we have  and .   is a martingale with respect 

to its own filtration when  which is equivalent to .  

Therefore 

                                                                      (5) 
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r is the risk free rate. 
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By the uniqueness of , Q1 is unique. 

Under Q1,  is a symmetric NIG Levy process with marginal distribution  from the family  

Proposition: Denote by the P-distribution function of the standardized variable  

 

Then 

 

We will approximate the standardized symmetric NIG distribution by the standard normal. 

                                                                           (8) 
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. 

Equation (8) becomes 
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The log likelihood function of the normal distribution,  given a sample of size n is given by 

 

The maximization of the log-likelihood function is done numerically using an optimization algorithm. For further 

details about this, see (Myung,  2003). However, I have chosen to use the R-package. 

3.4 Goodness of fit 

There are various approaches for measuring the goodness-of-fit of a given model. These include the following. 

3.4.1 QQ-plots 

We  use the QQ-plot graphical technique for determining which distribution best fits the  data set.  

3.4.2 Anderson-Darling test statistic: 

 

Where,  (no. of )/n, is the empirical cumulative distribution function and  is the cumulative 

distribution function. 

A smaller value of AD means that the empirical distribution and fitted distribution are closer. 

 

3.5  Risk-neutral Option  Pricing 

We assume that the price of a risk-free asset satisfies the ordinary differential equation 

, where is the interest rate. 

By first fundamental theorem of asset pricing, if a risk-neutral probability measure exists, then there is no 
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A European call option is the right but not obligation to buy a contingent claim at the time of maturity T to a fix 

strike price K. Thus the payoff function is given by  
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The arbitrage-free value of the option at time can be defined as 
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The European call option price will be based on the asset price process, , with maturity time  and strike 

price . Write  and . denote the option price and  the risk –neutral 

probability density function of price . 

The characteristic function of the density  is given by  

                                               (11) 

The option value which is related to the risk-neutral density  is given by 

                               (12)
 

Here  is not square integrable because when so that , we have . To 

obtain a square integrable function, we consider the modified price  given by  

                                                         (13) 

 for a suitable . The value affects the speed of convergence. 

The Fourier transform of  is defined by 

.                                                 (14) 

We first develop an analytical expression for  in terms of characteristic function, , and then obtain call 

prices numerically using the inverse transform 
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over the negative log strike axis, but aggravate the same condition for the positive log strike direction, and hence 
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for it to be square-integrable as well, a sufficient condition is provided by  being finite provided that  

 is finite. From the definition of the characteristic function, this requires that 

                                                                                 (17) 

 Carr and Madan suggest that, one may determine an upper bound on  from the analytical expression for the 

characteristic function and the condition (17). One quarter of this upper bound serves as a good choice for , 

that is . 

At equation (15) becomes, 

 

Where,  

Therefore,   

The characteristic function of the log of , which follows a NIG distribution, is given by 

 

 

The equation to get the option price of an NIG model is therefore, 

 

 

We now get the expression for the characteristic function of the normal distribution and use it to get the option 

price 

The characteristic function of normal distribution is given by 

 

The Brownian motion is a type of Levy process. Therefore, under ,   is a Levy process with characteristic 
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The standard Brownian motion is  

Therefore,   

 

The option valuation for the normal distribution is given by 

 

Remark:  We will use AM92 Actuarial tables to get the values of  and . 

IV. Application, Results and Conclusions 

Data for analysis was sourced from [11], which is in the public domain. Codes for the main analysis appear in the 

Appendix. The results from the analysis are  as  follows. 

4.1 Stylized features 

4.1.1 Skewness and kurtosis 

The skewness of log returns of price of carbon is -0.1212164. Since this value is near zero it is safe to say that 

our data is indeed symmetric. The value of kurtosis is -1.36154. This justifies the use of NIG levy process to 

model our data. The skewness and kurtosis of Gaussian distributions are 0 and 3 respectively.  

4.2 Parameter Estimation 

Asymmetric Normal Inverse Gaussian distribution: 

Table 1: Maximum Likelihood  Estimates for Parameters: 

     

NIG 1.562073917 0.003563 -1.650997 12.358663 

Normal -0.0952422 0.44958767   
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4.3 Q-Q Plot

 

 

The QQ-plots indicate that the empirical data fits much better to the NIG levy process than the Brownian motion. 
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4.4 Anderson-Darling (AD) test  Statistic: 

 Table 2: AD statistic for NIG and Brownian Motion 

 AD 

NIG 131.7 

Normal 208.5 

 

The AD-statistic value is relatively smaller for the NIG Levy process than Brownian motion. 

4.5  Model Parameter estimates 

Suppose the strike price, K, is 20 Euros, 25 Euros or 30 Euros, T=4 (compliance phase), , and  

r=0.05. The value of the call option using NIG model and Brownian motion are: 

Table 3 : NIG model Parameter estimates 

K k  

20 2.9957322 1.2535 

25 3.2188758 1.06 

30 3.4011973 0.92 

 

Table 4 : Brownian Motion Model Parameter estimates 

K k  

20 2.9957322 0.00806 

25 3.2188758 0.00682 

30 3.4011973 0.00595 

 

The option prices in the NIG model are higher than those of the Brownian model with respect   to the given strike 

prices. As the strike price increase, the value of the option decreases in both models. 

V. Conclusion 

The significant parameters  in the NIG model are the  ∝  and σ,  while for the Brownian Motion model the 

significant parameter is σ . The NIG model has a better fit  to data compared to the Brownian Motion model. 

Using the Fast Fourier transform, NIG model gives  higher option prices than the Brownian motion. 
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Appendix: R codes used in the Analysis 

Carbon = read.csv(file.choose()) 

Carbon 

Price <-carbon$Price 

Price 

Plot(price, xlab=”Fig1.1:carbon prices”) 

Plot (log_returns4, type=”1”, xlab=”Figure 2.2: Log returns of carbon prices”, ylab = “Log returns “) 

Log_returns4 < -diff(log(price), lag=364 ) 

Log_returns4 

par(mfrow=c(1,2)) 

qqnig(log_returns4, mu=0, delta=1, alpha=1, beta=0, xlab=”Figure 1.3: NIG QQ plot”) 

qqnorm(log_returns4, xlab = “  Figure 1.4 : Normal QQ plot “) 

qqline (log_returns4) 

y1 

ad.test(y1) 


