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The problem of power system optimization has become a deciding factor in electrical power system engineering 

practice with emphasis on cost and emission reduction. The economic emission dispatch (EED) problem has 

been addressed in this paper using a Biogeography-based optimization (BBO).  The BBO is inspired by 

geographical distribution of species within islands.  This optimization algorithm works on the basis of two 

concepts-migration and mutation. In this paper a non-uniform mutation operator has been employed. The 

proposed technique shows better diversified search process and hence finds solutions more accurately with high 

convergence rate. The BBO with new mutation operator is tested on ten unit system. The comparison which is 

based on efficiency, reliability and accuracy shows that proposed mutation operator is competitive to the present 

one. 

Keywords— Economic emission dispatch (EED); Biogeography based optimization; Mutation operator. 

 

I. INTRODUCTION  

Electricity, like all energy forms or vectors generates environmental, economic and social impacts that 

are trying to limit. One of the challenges for the 21st century is that of production from clean, reliable, 

safe and renewable resources that can replace thermal and nuclear power plants. In this context, some 

states are introducing environmental policies to encourage electricity producers to reduce their 

greenhouse gas emissions and thus their direct or indirect contributions to climate change. For thermal 

energy, gas, oil and coal are fossil sources. It will come well on a day when their quantity will be 

restricted. In addition, the use of these fossil fuels leads to greater pollution, despite the measures 

taken (denitrification, desulphurization). To these harmful effects is added the rising cost of these 

different sources. It is in this axis that the content of our work lies, in order to reduce the emission of 

pollutant gas and the cost function of different sources simultaneously. 

   Several research considered the classic EED problem where the cost of production function of each 

thermal unit is approximated by a quadratic function [1-2]. While, modern systems are with units that 

have prohibited areas of operation (POZ) due to physical operation limitations. In addition, the practical 

problem of EED includes valve load effects (VPLE) in the cost function. These additional constraints 

make the problem with a high nonlinear and discontinuous objective function. For this reason, the 

traditional optimization techniques proposed in the literature, such as linear programming [3] Newton's 

methods [4] and lambda iteration [5] can not achieve the best solution. 

  In the past years, a number of approaches have been developed for solving this problem using 

classical methods like dynamic programming [6] and interior point [7] methods have been used to solve 

the static EED. Among metaheuristic-based optimization techniques, genetic algorithm [8], particle 

swarm optimization [9], simulated annealing [10-11], artificial bee colony (ABC) [12], tabu search [13], 

differential evolution [14] and bacterial foraging [15] have been suggested for solving the EED problem.  

   Recently, a new, easy-to-implement, robust evolutionary algorithm has been introduced known as 

Optimization based on biogeography (BBO) algorithm. This Optimization based on biogeography 
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(BBO) algorithm introduced by Simon [16], is one approach that has been used to find an optimal 

solution in numerical optimization problems. The BBO algorithm based on biogeography concept, is 

inspired by the principle of the movement of species, depends mainly on the topographical 

characteristics of the space considered called habitat and time. 

  

II.  PROBLEM FORMULATION 

In this EED problem, two objective functions to be minimized simultaneously, which are the total 

emission and the total cost of the fuel in order to find the power production of the thermal power plants 

according to expected load demands. The description of objectives and constraints is as follows. 

In this EED problem, two objective functions to be minimized simultaneously, which are the total 

emission and the total cost of the fuel in order to find the power production of the thermal power plants 

according to expected load demands. The description of objectives and constraints is as follows. 

A. Objective functions 

The higher nonlinearity due to the VPLE shown in FIG. 1 which has been neglected in conventional 

methods, and which is caused by the sequential operation of thermal units with multi-steam intake 

valves, is considered constrained in this study. For this reason, a sinusoidal form will be included in the 

non-convex total cost function expressed in ($ / h), as shown in equation (1). The total emission in (ton 

/ h) is described by equation (2) corresponding to the second objective. 
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Where, 

ia , ib , ic , id  and ie  are the cost coefficients of the i-th unit. While, i , i , i , i  and i  are the 

emission coefficients. 
iP  is the output power in MW at the the i-th unit.   

   In our study, the EED bi-objective problem is converted to a mono-objective optimization problem 

[17], as it is considered in several works. Using the price penalty factor (PPF) method, equation (3) 

describes the combined economic emission goal function FT expressed as follows 

 1T T TF C E        (3) 

Where,  0,1rand  . The generated value of optimal solution, which can be a candidate solution 

in the Pareto front, is obtained by minimizing the FT function for each value of μ. λ is the average of 

the PPF of all thermal units. The PPF of the i-th unit is the ratio between its fuel cost and its emission 

for a maximum production capacity, described by equation (4). 
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B. Problem constraints 

The resolution of the problem EED is obtained by minimizing the FT function that is defined by 

equation (3) subject to the following constraints. 

 Generation capacity 

Depending on the unit design, the output active power of each unit must fall between its minimum and 

maximum limits respectively 
min

iP  and 
max

iP  

min max , 1, ,i i iP P P i N     (5) 

 Power balance constraints 
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Respecting the balance of power constraints given by equation (6), the total electricity production 

must cover the total power required more total transmission losses LP  . 

1

0
N

i D L

i

P P P


   (6) 

  

Where LP  can be calculated using constant loss formula [18], as given below. 
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Where, ijB , oiB , ooB  are the loss parameters also called B-coefficients. 

 POZ constraints 

The POZ constraints are described as follows. 
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Where, ,

down

i kP  and ,

up

i kP  are down and up bounds of POZ number k. iz  is the number of POZ for the i-

th unit due to the vibrations in the shaft or other machine faults. 

This is explained in Figure 2 which illustrates the fuel cost function for a typical thermal unit with POZ 

constraints. Where, the machine has discontinuous input-output characteristics [19]. Equation (9) 

describes the minimum and maximum limits of power generation iP  of the i-th unit taking into account 

the production capacity and POZ constraints. 
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Figure 1.  Fuel Cost Function with Five Valves (A, 

B, C, D, E) 

 

Figure 2.  Cost function for a thermal unit with 

POZ constraints 
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III. PROPOSED ALGORITHM WITH MUTATION 

Optimization based on biogeography (BBO) is a new algorithm inspired by the principle of the 

movement of species, introduced by Simon [16]. This algorithm depends mainly on the topographical 

characteristics of the space considered called habitat and time. Figure 3 explains immigration and 

species migration. It can be seen that the Smax habitat capacity is reached for one of zero 

immigration and the immigration rate λ is maximum when no species in the habitat and decreases the 

habitat will be more congested. Whereas the emigration rate μ is zero for the empty habitat. On the 

other hand, spices migrate when the habitat is congested to find other suitable residences. Therefore, 

the emigration rate of spices reaches its maximum value E when the number of spices in habitat S 

equals to Smax. 

 

Figure 3. Migration rates vs. number of spices 

 

   A variable called Habitat Suitability Index (HSI) is assigned for each habitat. More than the rate of 

immigration decreases and the rate of emigration increases more HSI of the habitat increases, and 

vice versa since the habitats with high HSI which are well suited to the residence of the spices are 

more frequented. BBO is a population-based technique like GA. A detailed study in [20] for the 

similarities and dissimilarities between the characteristics of BBO and GA. In the BBO algorithm, 

individuals that are represented by chromosomes in GA, are represented by habitats. The fitness of 

each candidate habitat is its HSI. Habitats with high HSI correspond to the best solutions. Mutation 

and migration operators are the two main operators for BBO, as for GAs. Migration includes 

emigration and immigration. 

A. Migration operators 

To provide an improved solution to the optimization problem, immigration and emigration operators 

are used. 

 Let consider .  Equations (10) and (11) respectively express the immigration and 

emigration rates of k  

spices in the habitat as shown in Figure 3. 
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Since each solution  is considered a habitat for this BBO algorithm and n is the 

number of decision variables. These variables are called Suitability Index variables(SIVs). By 

assigning each decision variable an SIV.  A pre-specified probability Pmod is used to modify All 

 

E 

I 

Smax Number of spices 

R
at

e 

maxN S

1k
k

I
N


 

  
 

k
Ek

N
 

 1 2, , , nX x x x 



 Asseri Ali Amer.M et al. “A BBO-based algorithm for the non-convex economic/environmental….” 

 
Volume 2 Issue 2 March 2018 

 
36 | P a g e  

solutions. All SIVs of the solution to be modified will migrate according to the immigration rate of the 

corresponding habitat. This standardized immigration rate is given by Equation (12). Once SIV is 

selected to migrate, the emigration rate is used to determine which of the other solutions must migrate 

its SIV to the solution to be changed.  

                (12) 

Where,   and  are minimum and maximum bounds of the immigration rate, respectively. 

and   are lower and upper limits of the normalized immigration rate, respectively. 

 

Figure 4.  Flowchart of the proposed optimization algorithm 

B. Mutation operator 

In the sudden immigration of a large number of species from a neighboring habitat, the HSI of each 

habitat can undergo drastic changes due to climate change, natural disasters, diseases. This random 

change is modeled by a mutation operator in the BBO algorithm. After application of the migration 

operators, the SVI of the number of habitats of the population obtained will be modified using a 

mutation operator according to the mutation rate [21]. This mutation is applied in order to obtain the 

diversity of the population at the next iteration, like in GA. Regarding the most BBO-based 

optimization techniques, the mutation rates for each H habitat depend on the probability that P of this 

habitat contains S species. As shown in reference [16], Ps is updated. for each time step Δt as 

follows. 

             (13) 

For , equation (13) can provide the following expression. 

 
 

(14) 

  
 

min

max min

u l
kl

k

   
 

 

 
 



min max

l u

 Set BBO parameters 

Generate initial population  

Set t = 0 

Evaluate population 

t < tmax 

t = t + 1 

Apply migration operators 

Apply mutation operator 

based on mutation rate  

Evaluate new population 

Yes 

No 

Stop 

    

1 1 1 1

1s s s s

s s s s

P t t P t t t

P t P t

 

    

     

   

0t 

 

 

 

1 1

1 1 1 1 max

1 1 max

; 0

; 1 1

;

s s s s s

s s s s s s s s

s s s s s

P P S

P P P P S S

P P S S

  

   

  

 

   

 

   


       

   





 Asseri Ali Amer.M et al. “A BBO-based algorithm for the non-convex economic/environmental….” 

 
Volume 2 Issue 2 March 2018 

 
37 | P a g e  

The mutation rate can be described as follows.  

                          (15) 

Where  is a pre-specified parameter. . 

In our study, the non-uniform mutation operator has been employed. So, at the t-th iteration, each 

SIV will be transformed to other SIV’ with a probability as follows. 

 

(16) 

 

(17) 

Where  is a binary number, r is a random number and tmax is the maximum number of iteration. a 

and b are lower and upper bounds of the corresponding SIV.  represents the dependency degree on 

the iteration number.The flowchart of the proposed BBO algorithm with mutation operator is given in 

Fig. 4. 

IV. IMPLEMENTATION OF THE PROPOSED ALGORITHM 

Having been applied for the first time to solve one of the main power system problems which is the 

EED problem, the BBO will be tested in this section on ten unit power system. In order to demonstrate 

the effectiveness of the proposed optimization technique, a comparison with BBO algorithm and more 

than ten metaheuristic-based techniques used for solving the power dispatch problem is presented. 

Results have been obtained using MATLAB R2009a installed on a PC with i7-4510U CPU @ 2.60 

GHz, 64 bit.  

 

A. EED problem for the ten-unit system without POZs 

To further demonstrate the applicability of this method for real power network, a large test system is 

also used that is the forty-unit system with VPLE. The EED problem is performed for this system with 

total power demand PD of 2000 MW. Fuel cost coefficients, emission coefficients and operating limits 

of generators are taken from [18]. For validation, the proposed algorithm has been compared with 

other techniques that are recently used in the literature to solve the EED problem for the ten-unit 

system. The fitness function given in equation (3) has been minimized for 1.38501$ / ton  . 

Convergence characteristics of fuel cost and emission functions using BBO algorithm are depicted in 

Fig. 5 and front Pareto Solutions in Fig.6. 

 

Figure 5.Convergence of the proposed algorithm of the Ten unit system without POZ 
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Figure 6.Pareto Solutions of the Ten unit system without POZ 

Best solution for minimum cost, minimum emission and best compromise solution extracted from 

the Pareto front are tabulated in Table 1. Results for the proposed algorithm BBO and several 

techniques proposed in the literature [22-28] such as NSGAII and MOPSO-based methods, are 

compared in Table 2. It is clear that the proposed BBO provides the cheapest generation cost and the 

lowest emission that are around 112906 $/h and 4176 ton/h as a compromise solution respectively.  

 

B. EED problem for the ten-unit system with POZs 

 

In this case, the ten-unit system is used to prove the feasibility of BBO for solving the EED problem 

including all operating constraints such as VPLE and POZ constraints. The problem becomes with 

high nonlinearity and more complicated. The B-loss matrix of the ten-unit system is given below. 
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Total cost and emission functions will be minimized individually and simultaneously according to the 

power demand PD in MW. Unit data are taken from [18]. Generation schedule in MW using BBO 

algorithm for front Pareto Solutions of fuel cost and emission function with POZ constraints is shown 

in Fig 7. In addition, it can be seen that when total cost in $/h is minimized, the total emission in ton/h 

is at its maximum value and vice versa. 
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Figure 7.Pareto Solutions of the Ten unit system with POZ 

TABLE 1. OPTIMUM GENERATION IN MW  FOR PD = 10500 MW USING BBO ALGORITHM. 

 

 Minimum cost Minimum Emission Compromise Solution 

P1 54.3119 54.9189 54.9958 

P2 79.6698 75.6915 79.6828 

P3 116.0014 78.9341 88.1911 

P4 100.1478 79.6363 85.0721 

P5 83.6505 158.4241 128.3153 

P6 76.2487 239.9714 148.1736 

P7 299.7389 294.7465 297.4553 

P8 339.0521 300.5536 321.0205 

P9 468.500 397.6924 441.6506 

P10 469.6871 401.2364 440.0315 

Cost ($/h) 111534 116348 112794 

Emission (ton/h) 4608 3937 4190 

Losses (MW) 87.0085 81.8051 84.5885 

 

TABLE 2. COMPARISON WITH OTHER META-HEURISTIC TECHNIQUES (TEN-UNIT SYSTEM, 2000 MW). 
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P10 469.8811 468.9854 469.7723 402.0187 399.8273 392.4622 441.2869 438.8710 426.9918 

Cost 

($/h) 
111519 111590 111706 116347 116014 116282 112906 112985 113360 

Emis

sion 

(ton/h) 

4590 4514 4432 3939 3946 3946 4176 4165 4129 

Losse

s (MW) 
87.0347 86.7711 86.5778 81.6653 81.8320 81.8962 84.5541 84.3814 84.1072 

Shaded columns correspond to the results provided by the proposed algorithm. 

V. CONCLUSION 

Economic emission dispatch (EED) is a difficult optimization problem in the operation of the 

electrical system. The quality of its optimal solution is influenced by the operating constraints, such as 

the prohibited operating zones and the load effects of the valve. In this context, this study presented 

an optimization based on Cauchy biogeography (BBO) to solve the EED problem. All the above 

constraints have been considered. In addition, the power balance constraint was considered. The 

validation of the proposed optimization algorithm has been verified on ten unit test system. The results 

of comparison with more than ten metaheuristic techniques used recently in the literature show that 

the proposed algorithm gives the best optimal solutions. Therefore, according to the results, BBO can 

be presented as an algorithm capable of EED problem. 
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