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ABSTRACT

In this paper, we consider the scaling invariant spaces for fractional Navier-Stokes in the
Lebesgue spaces L°(R") and homogeneous Besov spaces g: (r") respectively.
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I. INTRODUCTION

In this note, we study the scaling invariant spaces of the fractional Navier-Stokes
equations (also called generalized Navier-Stokes equations) on the half-sapce
R =(0,0)xR",n>2 :

u, +(-A)’u+u-Vu-vz=0,R"™,

V-u=0,R"", )

u(x,0) =u,, R"",
1
where £ ¢( E, 1) . The fractional Navier-Stokes equations (1) has been studied by many

5
authors. Lions [1] obtain the global existence of the classical solutions when £ > Z inthe 3D

1 n
case. Wu [2] got the n dimension result for > §+Z , in [3] considered the existence of

1+

utionin B. *  (R"
solutionin By q (R) . There are many other results in [4-8] and the reference there.
In this paper, we mainly study the road of finding the scaling invariant spaces for

fractional Navier-Stokes equations in Lebesgue space L"(R") and the homogeneous
Besov space B;’Q(R”) where the space L"(R") is the set of function f satisfying
1

”f”LP(R") Z(IRnl f(x)[° dx)B <0,0< p <o,

and the homogeneous Besov space is the subset of the dual of the Schwartz space S'(R") ,
with the boundedness of the semi norm
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II. RESULTS AND PROOFS
Before we give our main theorem, we firstly give a lemma which will be used later.

Volume 2 Issue 3 May 2018



Xiaona Cui “International Journal of Innovation Engineering and Science Research”

Lemma 2.1 (The scaling invariant spaces) The scaling invariant spaces satisfy
u, (t,x) = 27Ut AX) | 7, (t, X) = A7 2u(A7t, AX), (Uy) , (X) = 227Uy (AX) -
Proof: We firstly proof the scaling transforms of the functions u(t, x) , z(t,x) , u,(x) are
u,(t,x) = 22u(A", A°x) , 7, (t,x) = 21 7(21°t, 17 X), (U,) , (X) = 2%u, (1"X)
where a,b,c,d,e, f,g,h are non-negative integers to be determined later. If (u,z,u,) are the
solution of the system (1), then we take (u,,7,,(u,),) into the system (1) and find the
relationships between a,b,c,d,e, f,g,h such that (u,,z,, (@, ) are also the solution of the
system (1).
We calculate that
(u,), = A*"u, (1, A°X) ,
(-A)’u, =A% 27 (-A)u,
V-u, = A*"V-u(A"t, A°x),
Vr,=A""Vz(l°t,1'X).
Putting all the equations above into the first equation of the system (1), we have
A%, (AL, A°X)+ AP (=AY U+ A% - A7 Uu(A%, A°X) - VU(A°, A°X) — AT V(A% ATX) =0,
For the aim that (u,, 7z, (u,),)are also the solution of the first equation of the system (1), we need that
a+b=a+2pc=2a+c=d+f.
We note that the above equations have 3 equations with 6 unknown variables, there are
infinity solutions with 3 free variables. And through computing, we have
a+b=a+2pc =b=2p4c,
a+b=2a+c =b=a+c,
here we can choose c=1,thus b=24 and a=24-1. After that we take f =1, due to

a+b=d+f , that is 28-1+28=d+1 , we have d=44-2 . The variable e can be

arbitrary.
Since the term 7 can be expressed by u, we know that the important work of the

determination of the scaling invariant spaces is to choose the parameters in u,(t, x), that is
the determination of the parameters a,b,c,d,e, f,g,h. The method is by the fact that if the
function u(t, x) satisfies the system (1), so does u, (t, x) , thus we determine the parameters in
the scaling invariant spaces.

Next, we obtain the scaling invariant spaces X for the system (1), that is we find the
spaces X , such that |u], =|u,]|, . whereu,(x)=2*"u(4x) . We consider the cases that X
is the Lebesgue space L°(R") and the homogeneous Besov space B;’q(R”) respectively. The

first result is that X is of the Lebesgue space L (R").

Theorem 2.1 Fractional Navier Stokes equations (1) are scaling invariant on L?(R") , if and

only if p—L
Y 28-1"

Proof: It is sufficient to show that ||u Due to u, (x) = 2% u(4x), we have

LP(R™) :”u/l”LF’(R”)'

1
”ui ||Lp(R") :(J'R" | /Izﬁ_lu(/ﬁtx) |p dX)p .
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Set Ax=x", thus x= dx:%dx',weget

x
2] k)
ol ={ [ 200008 S |
ey 7| Jge an
Zﬁ—l—E 1 gﬂ_l_ﬂ
=27 ([ U P o) =20y

LP(R")’

therefore, to make sure |uf

n .

p= L. So we have the proof done.

25-1
Then, we show the result that X is of the homogeneous Besov space B;’q(R”) :

: - . N . —(2B-D+
Theorem 2.2 Fractional Navier Stokes equations (1) are scaling invarianton B P(R").

Proof: by the definition
A, () = [ @, (Y)A7 u(A(x—y))dy
= | @; (VA7 u(Ax-Ay)dy,

taking the change of variable Ay =y', that is dy :%dy', we have
AU, 0=] o (%Mzﬂlu(/lx— y )y’

= ﬂ,Zﬂ—lj'Rn 9, (%)u(/lx —ydy',
where

@ (%) = .[R" ¢(27j f)eh%fdg = IR" ¢(2*i ﬂvéﬂ)e?‘”iy"f'lndf'

= [ 42 1A e de
£ s

where =7 so we have

0, ()= 2" [ #2 A g
Taking 2714 =2"", we get
j'=-log,2"* =—(log, 2 +log, A) = j—log, A .
Therefore, we obtain
0, () =4[ H2T T dE =L, (y)
which implies Au, (x) = A% J.Rn A", (yu(Ax—y)dy'. As aresult,

1

8,000 ey = ([ 2772y YuCAX= y )y P k)P

1

=([ 1272 o, (y)u@ax—y)dy|® dx)’.
([ 1271, )
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Taking a change of variable Ax=x", that is hence x = % dx = Fdx , hence

e[

1
2412 1
=2 [ o U= y)dy P ax')” = 2
By the definition of the norm of Besov spaces,

— 5

HAJ A( )

1
1 P
25-1 o P '
A o (Yu(x'-y)dy] i”dXJ

2 p-1-1

i HAJ"“

1
L
L”(R”)) '

a -
2 Lp(Rn))q] , by the conclusion that

LP(RY)

f

A,f

1

we have ||f

A B"s)‘q(Rn) :[Z (ZSJ Ajf
j=—o

At
LP(R™)
where j'=j—log, A. Thus, the normof u, in B;’q(R”) is

2p-1-1
=1 Plaf

LP(R™)

1

| Allgs qr7y = jgo(Z A HAJ'U LP(R"))

1

q
)
LP(R")
‘q(Rn) 1

1
q q
Lp(R"))
where we used j = j'+log, A and sj =sj'+slog, 4, therefore
25j — 25j'+slogz/1 — 23j'zslogzl — 25j'2’s ]
we need

_ ji(zsi'zszzﬂlz &, u

s+2ﬂ —1-—

(e

s+24-1-—
2,

To make sure

A1IB) 4 (R™) :”u BS 4(R")’

s+2ﬂ—1—%=0 :>s=—(2,8—1)+%.

—(28-1)+—
It follows that the homogeneous Besov space should be chosen as B 4R = B p(R ).
Consequently we have the proof done.

By the embedding theorem of the homogeneous Besov spaces, we know that when p,q
are infinity, the space is the biggest one B;fiﬁ‘l)(R“) .And if g =1,the system (1) becomes
Navier-Stokes equations, the corresponding scaling invariant space is B;?w(R”). If =0,

the system (1) correspond to Euler equations, then the corresponding scaling invariant space
is BL_(R").
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III. CONCLUSIONS

We consider the value of the index parameters p in Lebesgue spaces L"(R"), and s, p,q in
homogeneous Besov spaces B;’q(R”) for fractional Navier-Stokes equations to be scaling
invariant in these spaces. We conclude that, the parameter p in Lebesgue spaces must be

—(2p-1)+2
251 and the homogeneous Besov space must be B P(R") . Due to the embedding
theorem in homogeneous spaces, we know for fractional Navier-Stokes equations the biggest scaling invariant
homogeneous Besov space is B;fiﬁ o (R") . And as the parameter special cases, we know the biggest s

p:

homogeneous Besov space for Navier-Stokes equations is B;Ylw (R"), the one for Euler equations is Bolw (R").
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