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ABSTRACT 
 

 

The scaling invariant spaces for fractional Navier-
Stokes equations  
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In this paper, we consider the scaling invariant spaces for fractional Navier-Stokes in the 

Lebesgue spaces ( )p nL R  and homogeneous Besov spaces 
, ( )s n

p qB R  respectively. 
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I.  INTRODUCTION 

In this note, we study the scaling invariant spaces of the fractional Navier-Stokes 

equations (also called generalized Navier-Stokes equations) on the half-sapce 
1 (0, ) , 2n nR R n

      : 
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where 
1

2
 ( , 1)  . The fractional Navier-Stokes equations (1) has been studied by many 

authors.  Lions [1] obtain the global existence of the classical solutions when 
5

4
    in the 3D 

case. Wu [2] got the n dimension result for 
1

+
2 4

n
  , in [3] considered the existence of 

solution in 
1+ 2

, ( )

n

np

p qB R



.  There are many other results in [4-8] and the reference there.  

   
  In this paper, we mainly study the road of finding the scaling invariant spaces for 

fractional Navier-Stokes equations in Lebesgue space ( )p nL R  and the homogeneous 

Besov space , ( )s n

p qB R
, 
where the space ( )p nL R  is the set of function f  satisfying  

  
1

( )
| ( ) | ,0p n n

p p

L R R
f f x dx p      ，  

and the homogeneous Besov space is the subset of the dual of the Schwartz space '( )nS R  , 

with the boundedness of the semi norm  

,

1
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p q

qq
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j Z
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  

II.  RESULTS AND PROOFS 

Before we give our main theorem, we firstly give a lemma which will be used later. 
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 Lemma 2.1 (The scaling invariant spaces) The scaling invariant spaces satisfy 

 
2 1 2( , ) ( , )u t x u t x 

     , 
4 2 2( , ) ( , )t x u t x 

    ,
2 1

0 0( ) ( ) ( )u x u x

   . 

Proof: We firstly proof the scaling transforms of the functions  ( , )u t x  , ( , )t x  , 0 ( )u x  are 

( , ) ( , )a b cu t x u t x     , ( , ) ( , )d e ft x t x     ,
0 0( ) ( ) ( )g hu x u x  

,
 

where , , , , , , ,a b c d e f g h  are non-negative integers to be determined later. If 0( , , )u u  are  the 

solution of the system (1), then we take 0( , , ( ) )u u   into the system (1) and find the 

relationships between , , , , , , ,a b c d e f g h  such that  0( , , ( ) )u u   are also the solution of the 

system (1). 

       We calculate that 

 ( ) ( , )a b b c

t tu u t x     , 

2( ) ( )a cu u  

      , 

( , )a b b cu u t x      , 

( , )d f e ft x       . 

    Putting all the equations above into the first equation of the system (1), we have 

 2( , )+ ( ) ( , ) ( , ) ( , ) 0a b b c a c a a c b c b c d f e f

tu t x u u t x u t x t x                        ,  

For the aim that 0( , , ( ) )u u   are also the solution of the first equation of the system (1), we need that 

 2 2a b a c a c d f       .  

We note that the above equations have 3 equations with 6 unknown variables, there are 

infinity solutions with 3 free variables. And through computing, we have 

 2a b a c    2b c  ,  

2a b a c    b a c   ,  

here we can choose 1c   , thus  2b   and 2 1a   . After that  we take 1f  , due to  

a b d f    , that is 2 1 2 1d      , we have 4 2d    . The variable e  can be 

arbitrary. 

      Since the term   can be expressed by u , we know that the important work of the 

determination of the scaling invariant spaces is to choose the parameters in ( , )u t x , that is 

the determination of the parameters , , , , , , ,a b c d e f g h . The method is by the fact that if the 

function ( , )u t x  satisfies the system (1), so does ( , )u t x , thus we determine the parameters in 

the scaling invariant spaces. 
 

        Next, we obtain the scaling invariant spaces X for the system (1), that is we find the 

spaces X , such that 
X X

u u  , where 2 1( ) ( )u x u x

    . We consider the cases that X  

is the Lebesgue space ( )p nL R
 
and the homogeneous Besov space  , ( )s n

p qB R  respectively.  The 

first result is that X  is of the Lebesgue space ( )p nL R . 

 

Theorem 2.1  Fractional Navier Stokes equations (1) are scaling invariant on ( )p nL R  , if and 

only if  
2 1

n
p





 . 

Proof:  It is sufficient to show that 
( ) ( )p n p nL R L R

u u . Due to 
2 1( ) ( )u x u x

   , we have 

   
1

2 1

( )
= | ( ) |p n n

p p

L R R
u u x dx

  

 . 
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Set 'x x  ,  thus 
'x

x


 , 
1

'
n

dx dx


 , we get 

 

1

2 1

( )

1
| ( ') | 'p n n

p
p

nL R R
u u x dx

 


 
  
 
  

                                                               
1

2 1 2 1

( )
| ( ') | ' p nn

n n

p pp p

L RR
u x dx u

 

 
   

  , 

therefore, to make sure 
( ) ( )p n p nL R L R

u u
 
to be true, we need 2 1 0

n

p
    ,  that is 

2 1

n
p





. So we have the proof done. 

Then, we show the result that X  is of the homogeneous Besov space  , ( )s n

p qB R . 

Theorem 2.2  Fractional Navier Stokes equations (1) are scaling invariant on 
(2 1)

, ( )

n

np

p qB R
  

 . 

   Proof:  by the definition  

 2 1( ) ( ) ( ( ))
nj j

R
u x y u x y dy

        

                         
2 1( ) ( )

n j
R

y u x y dy     , 

 taking the change of variable 'y y  , that is 
1

'
n

dy dy


 , we have 

2 1'
( ) ( ) ( ') '

nj j
R

y
u x u x y dy

   


    

                 

2 1 '
( ) ( ') '

n j
R

y
u x y dy  



  , 

where  

 
'

2
2 ' ''

( ) (2 ) (2 ') '
n n

y
i

j j iy n

j
R R

y
e d e d

 
        




       

                                            
2 ' '(2 ') '

n

n j iy

R
e d       , 

where = '





,  so we have 

2 ' ''
( ) (2 ') '

n

n j iy

j
R

y
e d     



   , 

 Taking '2 2j j  , we get 

 2 2 2 2' log 2 (log 2 log ) logj jj j          . 

Therefore, we obtain 

2 '

'

'
( ) (2 ) ( ')

n

n j iy n

j j
R

y
e d y       



   , 

which implies 
2 1( ) ( ') ( ') '

n

n n

j j
R

u x y u x y dy

        . As a result, 

 
1

2 1

'( )
( ) | ( ') ( ') ' |

p n n n

p p

j jL R R R
u x y u x y dy dx

                      

                     
1

2 1

'| ( ) ( ) |
n n

p p

j
R R

y u x y dy dx     . 
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Taking a change of variable 'x x  , that is hence
' 1
, '

n

x
x dx dx

 
   , hence 

 

1

2 1

'( )

1
( ) | ( ) ( ' ) | '

p n n n

p
p

j j nL R R R
u x y u x y dy dx

  


 
   

 
    

 
1

2 1 2 1

' ' ( )
| ( ) ( ' ) | '

p nn n

n n

p pp p

j j L RR R
y u x y dy dx u

 

  
   

     . 

By the definition of the norm of Besov spaces, 

 
,

1

( ) ( )
(2 )s n p n

p q

q
sj q

jB R L R
j

f f




 
  
 
  , 

we have  
,

1

( ) ( )
(2 )s n p n

p q

q
sj q

jB R L R
j

f f 





 
  
 
 , by the conclusion that 

 
2 1

'( ) ( )p n p n

n

p

j jL R L R
f f



 
 

    , 

where 2' logj j   . Thus, the norm of u  in , ( )s n

p qB R  is 

 
,

1

2 1

'( ) ( )
(2 )s n p n

p q

n q
sj qp

jB R L R
j

u u


 
  



 
  
 
 
   

                      

1

2 1

' ( )
(2 )

p n

n q
sj s qp

j L R
j

u


 
  



 
  
 
 
 '

 

                                                            

1

2 1

' ( )
'

(2 )
p n

n
qs

sj qp

j L R
j

u



  



 
  

 
 '   

                                                            
,

2 1

( )s n
p q

n
s

p

B R
u




  

  , 

where we used 2' logj j  
 
and 2' logsj sj s   , therefore 

 2 2' log log' '2 2 2 2 2
sj s ssj sj sj s  

    . 

To make sure 
, ,( ) ( )s n s n

p q p qB R B R
u u   , we need 

 2 1 0
n

s
p

     (2 1)+
n

s
p

    . 

It follows that the homogeneous Besov space should be chosen as 
(2 1)

, ,( ) ( )

n

s n np

p q p qB R B R
  

   . 

Consequently we have the proof done. 

        By the embedding theorem of the homogeneous Besov spaces, we know that when ,p q  

are infinity,  the space is the biggest one 
(2 1)

, ( )nB R 

 
 . And  if 1  , the system (1) becomes 

Navier-Stokes equations, the corresponding scaling invariant space is 
1

, ( )nB R

 
 .  If 0  , 

the system (1) correspond to Euler equations, then the corresponding scaling invariant space 

is 
1

, ( )nB R 
 .   
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III. CONCLUSIONS  

     We consider the value of the index parameters p in Lebesgue spaces ( )p nL R , and , ,s p q  in 

homogeneous Besov spaces , ( )s n

p qB R  for fractional Navier-Stokes equations to be scaling 

invariant in these spaces.  We  conclude that, the parameter p in Lebesgue spaces must be 

2 1

n
p





,  and the homogeneous Besov space must be 

(2 1)

, ( )

n

np

p qB R
  

 . Due to the embedding 

theorem in homogeneous spaces, we know for fractional Navier-Stokes equations the biggest scaling invariant 

homogeneous Besov space is
(2 1)

, ( )nB R 

 
 .  And as the parameter special cases, we  know the biggest s 

homogeneous Besov space for Navier-Stokes equations is 
1

, ( )nB R

 
 , the one for Euler equations is 

1

, ( )nB R 
 . 

REFERENCES 

[1] JL. Lions, "Quelques méthodes de résolution des problèmes aux limites non linéaires", (French), Paris: 

Dunod/Gauthier-Villars, 1969. 

[2] J. Wu, "Generalized MHD equations, Journal of Differential equations", 195, 284-312, 2003. 

[3] J. Wu, "The generalized incompressible Navier-Stokes equations in Besov spaces", Dynamics of  PDE. 1, 381-400, 

2004. 

[4] J. Wu, "Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in 

Besov spaces", Communications in Mathematical Physics, 263, 803-831, 2005. 

[5] T. Runst, W. Sickel, "Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential 

equations", de Gruyter Series in Nonlinear Analysis and Applications, 3, Walter de Gruyter: Berlin, 1996. 

[6] C. Miao, B. Yuan, B. Zhang, "Well-posedness of the Cauchy problem for the fractional power dissipative equations", 

Nonlinear Analysis: Theory, Methods & Applications, 68, 461–484, 2008. 

[7] X. Yu, Z. Zhai, "Well-posedness for fractional Navier-Stokes equations in the largest critical spaces", Mathematical 

Methods in Applied Sciences, 35, 676–683, 2012. 

[8] Z. Zhai, "Global well-posedness for nonlocal fractional Keller-Segel systems in critical Besov space", Nonlinear 

Analysis: Theory, Methods & Applications, 72, 3173–3189,  2010. 


