

Formulation of Curious Family of 3-Tuples

A. Vijayasankar

Assistant Professor,
Department of Mathematics,
National College, Affiliated to Bharathidasan University, Trichy-620 001,
Tamil Nadu, India.

Sharadha Kumar

Research Scholar,
Department of Mathematics,
National College, Affiliated to Bharathidasan University, Trichy-620 001,
Tamil Nadu, India.

M.A. Gopalan

Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

ABSTRACT

This paper deals with the study of formulation of special family of 3-tuples (a,b,c) such that the product of any two elements of the set added with their sum is a perfect square.

Keywords— Diophantine 3-tuples; negative pellian equation; integer solutions.

I. INTRODUCTION

The problem of constructing the sets with property that product of any two of its distinct elements is one less than a square has a very long history and such sets have been studied by Diophantus. A set of m distinct positive integers $\{a_1,a_2,a_3,.....a_m\}$ is said to have the property $D(n), n \in \mathbb{Z} - \{0\}$ if $a_i a_j + n$ is a perfect square for all $1 \le i < j \le m$ or $1 \le j < i \le m$ and such a set is called a Diophantine m-tuple with property D(n). In this context, one may refer [1-4].

A set of m distinct positive integers (a_1,a_2,\ldots,a_m) is said to be Dio m-tuple with property D(n) if $a_ia_j + (a_i+a_j) + n$ or $a_ia_j - (a_i+a_j) + n$ is a perfect square for all $1 \le i < j \le m$ or $1 \le j < i \le m$. In particular, one may refer [5-8] for problem on special dio-3-tuples.

This paper aims at constructing sequences of 3-tuples where the product of any two elements of the set added with their sum is a perfect square.

II. METHOD OF ANALYSIS

Sequence 1:

Let
$$a = 2k^2 + 6k + 4$$
, $c_0 = 8k^2 + 16k + 9$

It is observed that

$$ac_0 + a + c_0 = (4k^2 + 10k + 7)^2$$

Let c_1 be any integer such that

$$(a+1)c_1 + a = \alpha^2 \tag{1}$$

$$(c_0 + 1)c_1 + c_0 = \beta^2$$
 (2)

Eliminating c_1 between (1) and (2), we have

$$(c_0 + 1)\alpha^2 - (a + 1)\beta^2 = (a - c_0)$$
(3)

Introducing the linear transformations

$$\alpha = X + (a+1)T$$
, $\beta = X + (c_0 + 1)T$ (4)

in (3) and simplifying we get

$$X^2 = (a+1)(c_0+1)T^2-1$$

which is satisfied by T=1, $X=4k^2+10k+7$

In view of (4) and (1), it is seen that

$$c_1 = 18k^2 + 42k + 28$$

Let c_2 be any integer such that

$$(a+1)c_2 + a = \alpha^2 \tag{5}$$

$$(c_1+1)c_2+c_0=\beta^2$$
 (6)

Eliminating c_2 between (5) and (6), we have

$$(c_1+1)\alpha^2 - (a+1)\beta^2 = (a-c_1)$$
(7)

Introducing the linear transformations

$$\alpha = X + (a+1)T$$
, $\beta = X + (c_1+1)T$ (8)

in (7) and simplifying we get

$$X^2 = (a+1)(c_1+1)T^2-1$$

which is satisfied by T=1, $X=6k^2+16k+12$

In view of (8) and (5), it is seen that

$$c_2 = 32k^2 + 80k + 57$$

Let c_3 be any integer such that

$$(a+1)c_3 + a = \alpha^2 \tag{9}$$

$$(c_2 + 1)c_3 + c_0 = \beta^2 \tag{10}$$

Eliminating c_3 between (9) and (10), we have

$$(c_2+1)\alpha^2 - (a+1)\beta^2 = (a-c_2)$$
(11)

Introducing the linear transformations

$$\alpha = X + (a+1)T$$
, $\beta = X + (c_2 + 1)T$ (12)

in (11) and simplifying we get

$$X^2 = (a+1)(c_2+1)T^2-1$$

which is satisfied by T=1, $X=8k^2+22k+17$

In view of (12) and (9), it is seen that

$$c_3 = 50k^2 + 130k + 96$$

The repetition of the above process leads to the generation of sequence of 3-tuples whose general form is given by (a, c_{s-1}, c_s) where

$$c_{s-1} = (2s^2 + 4s + 2)k^2 + (6s^2 + 8s + 2)k + (5s^2 + 4s), s = 1, 2, 3, ...$$

A few numerical examples are presented in Table 1 below:

Table 1: Numerical Examples

k	$(a,c_{\scriptscriptstyle 0},c_{\scriptscriptstyle 1})$	(a,c_1,c_2)	(a,c_2,c_3)	(a,c_3,c_4)
2	(24, 73, 184)	(24, 184, 345)	(24, 345,556)	(24, 556,817)
3	(40, 129, 316)	(40, 316, 585)	(40, 585, 936)	(40, 936, 1369)
4	(60, 201,484)	(60, 484,889)	(60,889,1416)	(60,1416,2065)
5	(84,289,688)	(84,688,1257)	(84,1257,1996)	(84,1996,2905)

Sequence 2:

Let
$$a=1, c_0=2k^2-2k$$

It is observed that

$$ac_0 + a + c_0 = (2k-1)^2$$

Let c_1 be any integer such that

$$(a+1)c_1 + a = \alpha^2$$
 (13)

$$(c_0 + 1)c_1 + c_0 = \beta^2 \tag{14}$$

Eliminating c_1 between (13) and (14), we have

$$(c_0 + 1)\alpha^2 - (a + 1)\beta^2 = (a - c_0)$$
(15)

Introducing the linear transformations

$$\alpha = X + (a+1)T$$
, $\beta = X + (c_0 + 1)T$ (16)

in (15) and simplifying we get

$$X^2 = (a+1)(c_0+1)T^2-1$$

which is satisfied by T=1, X=2k-1

In view of (16) and (13), it is seen that

$$c_1 = 2k^2 + 2k$$

Let c_2 be any integer such that

$$(a+1)c_2 + a = \alpha^2$$
 (17)

$$(c_1 + 1)c_2 + c_0 = \beta^2 \tag{18}$$

Eliminating c_2 between (17) and (18), we have

$$(c_1+1)\alpha^2 - (a+1)\beta^2 = (a-c_1)$$
(19)

Introducing the linear transformations

$$\alpha = X + (a+1)T$$
, $\beta = X + (c_1 + 1)T$ (20)

in (19) and simplifying we get

$$X^2 = (a+1)(c_1+1)T^2-1$$

which is satisfied by T=1, X=2k+1

In view of (20) and (17), it is seen that

$$c_2 = 2k^2 + 6k + 4$$

Let c_3 be any integer such that

$$(a+1)c_3 + a = \alpha^2$$
 (21)

$$(c_2 + 1)c_3 + c_0 = \beta^2$$
 (22)

Eliminating c_3 between (21) and (22), we have

$$(c_2 + 1)\alpha^2 - (a + 1)\beta^2 = (a - c_2)$$
(23)

Introducing the linear transformations

$$\alpha = X + (a+1)T$$
, $\beta = X + (c_2 + 1)T$ (24)

in (23) and simplifying we get

$$X^{2} = (a+1)(c_{2}+1)T^{2}-1$$

which is satisfied by T=1, X=2k+3

In view of (24) and (21), it is seen that

$$c_3 = 2k^2 + 10k + 12$$

The repetition of the above process leads to the generation of sequence of 3-tuples whose general form is given by (a, c_{s-1}, c_s) where

$$c_{s-1} = 2k^2 + (4s-6)k + (2s^2 - 6s + 4), s = 1, 2, 3, ...$$

A few numerical examples are presented in Table 2 below:

Table 2: Numerical Examples

k	$(a,c_{\scriptscriptstyle 0},c_{\scriptscriptstyle 1})$	(a,c_1,c_2)	(a,c_2,c_3)	(a,c_3,c_4)
2	(1, 4, 12)	(1, 12, 24)	(1, 24, 40)	(1, 40, 60)
3	(1, 12, 24)	(1, 24, 40)	(1, 40, 60)	(1, 60, 84)
4	(1, 24,40)	(1, 40, 60)	(1,60, 84)	(1, 84, 112)
5	(1, 40, 60)	(1, 60, 84)	(1, 84, 112)	(1, 112, 144)

Sequence 3:

Let $a=1, c_0=2k^2+2k$

It is observed that

$$ac_0 + a + c_0 = (2k+1)^2$$

Let c_1 be any integer such that

$$(a+1)c_1 + a = \alpha^2$$
 (25)

$$(c_0 + 1)c_1 + c_0 = \beta^2 \tag{26}$$

Eliminating c_1 between (25) and (26), we have

$$(c_0 + 1)\alpha^2 - (a + 1)\beta^2 = (a - c_0)$$
(27)

Introducing the linear transformations

$$\alpha = X + (a+1)T$$
, $\beta = X + (c_0 + 1)T$ (28)

in (27) and simplifying we get

$$X^2 = (a+1)(c_0+1)T^2-1$$

which is satisfied by T=1, X=2k+1

In view of (28) and (25), it is seen that

$$c_1 = 2k^2 + 6k + 4$$

Let c_2 be any integer such that

$$(a+1)c_2 + a = \alpha^2$$
 (29)

$$(c_1+1)c_2+c_0=\beta^2$$
(30)

Eliminating c_2 between (29) and (30), we have

$$(c_1 + 1)\alpha^2 - (a + 1)\beta^2 = (a - c_1)$$
(31)

Introducing the linear transformations

$$\alpha = X + (a+1)T$$
, $\beta = X + (c_1 + 1)T$ (32)

in (31) and simplifying we get

$$X^2 = (a+1)(c_1+1)T^2-1$$

which is satisfied by T=1, X=2k+3

In view of (32) and (29), it is seen that

$$c_2 = 2k^2 + 10k + 12$$

Let c_3 be any integer such that

$$(a+1)c_3 + a = \alpha^2 (33)$$

$$(c_2 + 1)c_3 + c_0 = \beta^2 \tag{34}$$

Eliminating c_3 between (33) and (34), we have

$$(c_2 + 1)\alpha^2 - (a + 1)\beta^2 = (a - c_2)$$
(35)

Introducing the linear transformations

$$\alpha = X + (a+1)T$$
, $\beta = X + (c_2 + 1)T$ (36)

in (35) and simplifying we get

$$X^{2} = (a+1)(c_{2}+1)T^{2}-1$$

which is satisfied by T=1, X=2k+5

In view of (36) and (33), it is seen that

$$c_3 = 2k^2 + 14k + 24$$

The repetition of the above process leads to the generation of sequence of 3-tuples whose general form is given by (a, c_{s-1}, c_s) where

$$c_{s-1} = 2k^2 + (4s-2)k + (2s^2 - 2s), s = 1,2,3,...$$

A few numerical examples are presented in Table 3 below:

Table 3: Numerical Examples

k	$(a,c_{\scriptscriptstyle 0},c_{\scriptscriptstyle 1})$	(a,c_1,c_2)	(a,c_2,c_3)	(a,c_3,c_4)
2	(1,12,24)	(1, 24, 40)	(1, 40, 60)	(1, 60, 84)
3	(1,24,40)	(1, 40, 60)	(1, 60, 84)	(1, 84, 112)
4	(1,40,60)	(1, 60, 84)	(1, 84, 112)	(1, 112, 144)
5	(1,60,84)	(1, 84, 112)	(1, 112, 144)	(1, 144, 180)

Sequence 4:

Let
$$a = 4$$
, $c_0 = 5k^2 + 4k$

It is observed that

$$ac_0 + a + c_0 = (5k + 2)^2$$

Let c_1 be any integer such that

$$(a+1)c_1 + a = \alpha^2 (37)$$

$$(c_0 + 1)c_1 + c_0 = \beta^2 \tag{38}$$

Eliminating c_1 between (37) and (38), we have

$$(c_0 + 1)\alpha^2 - (a + 1)\beta^2 = (a - c_0)$$
(39)

Introducing the linear transformations

$$\alpha = X + (a+1)T$$
, $\beta = X + (c_0 + 1)T$ (40)

in (39) and simplifying we get

$$X^2 = (a+1)(c_0+1)T^2-1$$

which is satisfied by T=1, X=5k+2

In view of (40) and (37), it is seen that

$$c_1 = 5k^2 + 14k + 9$$

Let c_2 be any integer such that

$$(a+1)c_2 + a = \alpha^2 \tag{41}$$

$$(c_1 + 1)c_2 + c_0 = \beta^2 \tag{42}$$

Eliminating c_2 between (41) and (42), we have

$$(c_1+1)\alpha^2 - (a+1)\beta^2 = (a-c_1)$$
(43)

Introducing the linear transformations

$$\alpha = X + (a+1)T$$
, $\beta = X + (c_1+1)T$ (44)

in (43) and simplifying we get

$$X^2 = (a+1)(c_1+1)T^2-1$$

which is satisfied by T = 1, X = 5k + 7

In view of (44) and (41), it is seen that

$$c_2 = 5k^2 + 24k + 28$$

Let c_3 be any integer such that

$$(a+1)c_2 + a = \alpha^2 (45)$$

$$(c_2 + 1)c_2 + c_0 = \beta^2 \tag{46}$$

Eliminating c_3 between (45) and (46), we have

$$(c_2 + 1)\alpha^2 - (a + 1)\beta^2 = (a - c_2)$$
(47)

Introducing the linear transformations

$$\alpha = X + (a+1)T$$
, $\beta = X + (c_2 + 1)T$ (48)

in (47) and simplifying we get

$$X^2 = (a+1)(c_2+1)T^2-1$$

which is satisfied by T=1, X=5k+12

In view of (48) and (45), it is seen that

$$c_3 = 5k^2 + 34k + 57$$

The repetition of the above process leads to the generation of sequence of 3-tuples whose general form is given by (a, c_{s-1}, c_s) where

$$c_{s-1} = 5k^2 + (10s - 6)k + (5s^2 - 6s + 1), s = 1, 2, 3, ...$$

A few numerical examples are presented in Table 4 below:

k (a,c_1,c_2) (a,c_2,c_3) (a,c_3,c_4) (a,c_0,c_1) (4,28,57) 2 (4, 57, 96) (4, 96, 145) (4, 145, 204) (4,57,96) (4, 96, 145) (4, 145, 204) (4, 204, 273) 3 (4,96,145) (4, 145, 204) (4, 204, 273) (4, 273, 352) 4 (4, 352, 441) (4,145,204) (4, 204, 273) (4, 273, 352) 5

Table 4: Numerical Examples

Sequence 5:

Let
$$a = 4$$
, $c_0 = 5k^2 - 4k$

It is observed that

$$ac_0 + a + c_0 = (5k - 2)^2$$

Let c_1 be any integer such that

$$(a+1)c_1 + a = \alpha^2 (49)$$

$$(c_0 + 1)c_1 + c_0 = \beta^2 \tag{50}$$

Eliminating c_1 between (49) and (50), we have

$$(c_0 + 1)\alpha^2 - (a + 1)\beta^2 = (a - c_0)$$
(51)

Introducing the linear transformations

$$\alpha = X + (a+1)T$$
, $\beta = X + (c_0 + 1)T$ (52)

in (51) and simplifying we get

$$X^2 = (a+1)(c_0+1)T^2-1$$

which is satisfied by T=1, X=5k-2

In view of (52) and (49), it is seen that

$$c_1 = 5k^2 + 6k + 1$$

Let c_2 be any integer such that

$$(a+1)c_2 + a = \alpha^2 (53)$$

$$(c_1+1)c_2+c_0=\beta^2 (54)$$

Eliminating c_2 between (53) and (54), we have

$$(c_1+1)\alpha^2 - (a+1)\beta^2 = (a-c_1)$$
(55)

Introducing the linear transformations

$$\alpha = X + (a+1)T$$
, $\beta = X + (c_1 + 1)T$ (56)

in (55) and simplifying we get

$$X^{2} = (a+1)(c_{1}+1)T^{2}-1$$

which is satisfied by T=1, X=5k+3

In view of (56) and (53), it is seen that

$$c_2 = 5k^2 + 16k + 12$$

Let c_3 be any integer such that

$$(a+1)c_2 + a = \alpha^2$$
 (57)

$$(c_2 + 1)c_3 + c_0 = \beta^2 \tag{58}$$

Eliminating c_3 between (57) and (58), we have

$$(c_2 + 1)\alpha^2 - (a + 1)\beta^2 = (a - c_2)$$
(59)

Introducing the linear transformations

$$\alpha = X + (a+1)T$$
, $\beta = X + (c_2 + 1)T$ (60)

in (59) and simplifying we get

$$X^2 = (a+1)(c_2+1)T^2-1$$

which is satisfied by T=1, X=5k+8

In view of (60) and (57), it is seen that

$$c_3 = 5k^2 + 26k + 33$$

The repetition of the above process leads to the generation of sequence of 3-tuples whose general form is given by (a, c_{s-1}, c_s) where

$$c_{s-1} = 5k^2 + (10s - 14)k + (5s^2 - 14s + 9), s = 1, 2, 3, ...$$

A few numerical examples are presented in Table 5 below:

Table 5: Numerical Examples

k	$(a,c_{\scriptscriptstyle 0},c_{\scriptscriptstyle 1})$	(a,c_1,c_2)	(a,c_2,c_3)	(a,c_3,c_4)
2	(4,12,33)	(4, 33, 64)	(4, 64, 105)	(4, 105, 156)
3	(4,33,64)	(4, 64, 105)	(4, 105, 156)	(4, 156, 217)
4	(4,64,105)	(4, 105, 156)	(4, 156, 217)	(4, 217, 288)
5	(4,105,156)	(4, 156, 217)	(4, 217, 288)	(4, 288, 369)

Sequence 6:

Let
$$a=12, c_0=13k^2-10k+1$$

It is observed that

$$ac_0 + a + c_0 = (13k - 5)^2$$

Let c_1 be any integer such that

$$(a+1)c_1 + a = \alpha^2$$
 (61)

$$(c_0 + 1)c_1 + c_0 = \beta^2 \tag{62}$$

Eliminating c_1 between (61) and (62), we have

$$(c_0 + 1)\alpha^2 - (a + 1)\beta^2 = (a - c_0)$$
(63)

Introducing the linear transformations

$$\alpha = X + (a+1)T$$
, $\beta = X + (c_0 + 1)T$ (64)

in (63) and simplifying we get

$$X^2 = (a+1)(c_0+1)T^2-1$$

which is satisfied by T=1, X=13k-5

In view of (64) and (61), it is seen that

$$c_1 = 13k^2 + 16k + 4$$

Let c_2 be any integer such that

$$(a+1)c_2 + a = \alpha^2$$
 (65)

$$(c_1 + 1)c_2 + c_0 = \beta^2 \tag{66}$$

Eliminating c_2 between (65) and (66), we have

$$(c_1+1)\alpha^2 - (a+1)\beta^2 = (a-c_1)$$
(67)

Introducing the linear transformations

$$\alpha = X + (a+1)T$$
, $\beta = X + (c_1 + 1)T$ (68)

in (67) and simplifying we get

$$X^{2} = (a+1)(c_{1}+1)T^{2}-1$$

which is satisfied by T=1, X=13k+8

In view of (68) and (65), it is seen that

$$c_2 = 13k^2 + 42k + 33$$

Let c_3 be any integer such that

$$(a+1)c_3 + a = \alpha^2 (69)$$

$$(c_2 + 1)c_3 + c_0 = \beta^2 \tag{70}$$

Eliminating c_3 between (69) and (70), we have

$$(c_2+1)\alpha^2 - (a+1)\beta^2 = (a-c_2)$$
(71)

Introducing the linear transformations

$$\alpha = X + (a+1)T$$
, $\beta = X + (c_2 + 1)T$ (72)

in (71) and simplifying we get

$$X^2 = (a+1)(c_2+1)T^2-1$$

which is satisfied by T=1, X=13k+21

In view of (72) and (69), it is seen that

$$c_3 = 13k^2 + 68k + 88$$

The repetition of the above process leads to the generation of sequence of 3-tuples whose general form is given by (a, c_{s-1}, c_s) where

$$c_{s-1} = 13k^2 + (26s - 36)k + (13s^2 - 36s + 24)$$
, $s = 1, 2, 3, ...$

A few numerical examples are presented in Table 6 below:

Table 6: Numerical Examples

k	$(a,c_{\scriptscriptstyle 0},c_{\scriptscriptstyle 1})$	(a,c_1,c_2)	(a,c_2,c_3)	(a,c_3,c_4)
2	(12,33,88)	(12, 88, 169)	(12, 169, 276)	(12, 276, 409)
3	(12,88,169)	(12, 169,276)	(12, 276, 409)	(12, 409, 568)
4	(12,169,276)	(12, 276,409)	(12, 409, 568)	(12, 568, 753)
5	(12,276,409)	(12,409,568)	(12, 568,753)	(12, 753, 964)

REFERENCES

- [1] N.Thiruniraiselvi, M.A.Gopalan, Sharadha Kumar," On the sequences of Diophantine 3-tuples generated through Bernoulli Polynomials", International Journal of Advanced Science and Technology, 27(1), Pp: 61-68, 2019.
- [2] A.Vijayasankar, Sharadha Kumar, M.A.Gopalan, "On Sequences of diophantine 3-tuples generated through Pronic Numbers", IOSR-JM, 15(5) Ser.II, Pp:41-46, (Sep-oct 2019).
- [3] J.Shanthi, M.A.Gopalan, Sharadha Kumar, On the Sequences of Diophantine 3-tuples generated through Euler Polynomials, International Journal of Advanced Science and Technology, 27(1), Pp. 318-325, 2019.
- [4] M.A.Gopalan and Sharadha Kumar, "On the Sequences of Diophantine 3-tuples generated through Euler and Bernoulli Polynomials", Tamap Journal of Mathematics and Statistics", Volume 2019, Pp. 1-5, 2019.
- [5] M.A.Gopalan, S.Vidhyalakshmi, N.Thiruniraiselvi, "On Non-Extendable Special Dio -3-Tuples, International Journal of Innovative Research in Science, Engineering and Technology", Vol.3, Issue 8, Pp.15318-15323, August 2014.
- [6] K. Meena, S. Vidhyalakshmi, M.A. Gopalan, R. Presenna, "Sequences of special dio-triples", IJMTT, 10(1), Pp. 43-46, 2014.
- [7] Vijayasankar.A, Gopalan.M.A, Krithika.V, "Three sequences of Special Dio Triple, Research Inventy", International Journal of Engineering and Science, Vol.6 (9), Pp. 50-55, September 2017.
- [8] A.Vijayasankar, Sharadha Kumar, M.A.Gopalan, "On Sequences of dio 3-tuples generated through Polynomials", Journal of Interdisciplinary Cycle Research, 11(11), Pp:593-604, November 2019.