
International Journal of Innovation Engineering and Science Research 

(ISSN: 2581-4591)  

 

 
Volume 5 Issue 5 November-December 2021 85|P a g e  

www.ijiesr.com 

ABSTRACT 
 

A Comparative Study of 2D Human Pose 
Estimation Methods 

 
1
Daniela Hagiescu, 

2
Felix Pirvan 

Advanced Slisys, Bucharest, Romania 

 
3
Lidia Dobrescu 

3Faculty of Electronics, Telecommunication and Information Technology, University POLITEHNICA of 
Bucharest, Bucharest, Romania 

 

 
 

 

Human pose estimation is the process of detecting the key points or landmarks of the human body. Face pose 
estimation and hand pose estimation are the two most common special cases. In this paper, we will focus on the 
body as a whole. Human pose estimation is used in various subsequent tasks, such as action recognition or 
motion characterization. We are presenting the main types of approaching the problem and the different 
techniques and architectures involved. We are also discussing the evaluation datasets available and their 
features. The field has seen fabulous progress in later years since the advent of deep learning. 
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I.  INTRODUCTION 

Human pose estimation (HPE) involves detecting the positions of the human body parts, given as input 
some sensor data. Input data often comes from one or more cameras. A single camera can be RGB or 
RGB-D (depth) camera, while stereo camera systems can also be used. Sometimes video sequences 
are available, and this helps by imposing additional consistency constraints on the HPE from each 
single image. Applications of HPE range from movies to healthcare, from virtual reality to autonomous 
cars and from surveillance to robotics. 

Some HPE methods use a body model that makes connections between the skeleton joints, based on 
prior knowledge about the human body structure. The most commonly used body model is skeleton-
based. It describes the connections between different joints of the skeleton. The HPE task comes down 
to estimating the 2D or 3D coordinates of the skeleton joints.Other methods do not use joint 
connections, hence they are faster, but can be prone to errors when encoutering an unseen pose. 
Some HPE methods use a top-down approach, where they first detect all the persons in the image and 
then estimate the pose of each person. Other methods work bottom-up, first detecting all the joints and 
then grouping them by persons. The more persons in the image, the more time needed for top-down 
methods, while the bottom-up methods maintain a constant time. However, when persons overlap, 
bottom-up methods encounter difficulties matching the joints to the right person. Some methods use 
other kind of body parts in addition to the joints, like the limbs. Some HPE methods directly regress the 
coordinates of the joints, while others try to detect the image patches around the joint or use heat maps 
instead of point locations. Single-stage HPE methods are more compact are easier to train end-to-end, 
while multi-stage methods can offer more flexibility and make it easier to pinpoint the issues that occur 
in one stage or another. 

In our attempt to summarize the present state of the field, we build upon previous work. In [1], the 
authors focus on single-camera (monocular) HPE and discuss separately the 2D and 3D methods, 
present the datasets and the metrics used for evaluation. Even more recently, [2] presents several 
body models and then many 2D and 3D methods grouped by approach (top-down or bottom-up), 
including a performance comparison. In this paper, our approach is to select and focus on the most 
widely used datasets and the most successful methods and their techniques. The field is already vast 
enough to get lost, so our goal is to bring worward the most promising results. 

II. DATASETS 

In order to train and evaluate different HPE methods, several datasets have been made publicly 
available. They all maintain a competition ladder with the best scoring methods. Those datasets have 
put together a set of images or video sequences containing the full body of one or more persons. They 
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defined a set of keypoints and annotated each image with the positions of all defined joints. As you can 
see in Figure 1, the set of keypoints differs from one dataset to another, making it difficult to use all of 

them together. 

Leeds Sports Pose (LSP) has two versions: original and extended. Together, they contain 12.000 
images of persons during sport activities, crawled from Flickr. Each person is annotated with a 14 
keypoints: top of the head, neck, shoulders, elbows, wrists, hips, knees and ankles. A visibility flag for 
each key pointis also stored. The images are scaled as to make the annotated person 150 pixels in 
height. 

MPII Human Pose is a dataset put together by the Max Planck Institute for Informatics. It contains 
around 25.000 images extracted from Youtube videos. The images may contain more than one 
persons, for a total of 40.000 annotated persons. It uses the same set of keypoints as the LSP dataset. 
It also annotates the type of activity the person is doing, for a total of 410 activity types. The activities 
are grouped by category, e.g. bicycling, dancing, home repair, music playing, self care, transportation 
and others. 

Penn Action is dataset built by the University of Pennsylvania. It contains over 2300 video sequences 
of maximum resolution 640x480 pixels, with all frames annotated, making up for 330.000 frames with 
330.000 instances of 2300 persons. However, these numbers should be regarded with caution, as the 
frames from the same video are not independent. There are 13 annotated keypoints (head, shoulders, 
elbows, wrists, hips, knees and ankles), as well as 15 actions (e.g. baseball swing, bowling, squats, 
tennis serve). Labels also include the visibility of each keypoint, the viewpoint (front, back, left, right), 
the bounding box of the person. 

COCO-WholeBody is an extension of the COCO dataset with around 200.000 images and 250.000 
annotated persons. In addition to the 17 generic body key points  (nose, eyes, ears, shoulders, elbows, 
wrists, hips, knees and ankles), it also defines and annotates 68 key points  for face, 42 for hands and 
6 for feet. The bounding box for the body is also provided. 

TABLE I.  DATASETS 

Dataset Images Videos Persons Key points  Actions 

LSP 12.000 - 12.000 14 8 

MPII 25.000 - 40.000 14 410 

UPenn - 2300 2300/330.000 13 15 

COCO 200.000 - 250.000 17 - 

Fig. 1 Keypoints annotated by some of the most used datasets 
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III. BEST RANKING METHODS 

Zoom Net [3] is a deep neural network introduced by the same team that built COCO-Whole Body 
dataset. It takes into account the hierarchical structure of the human body to solve scale variations of 
certain body parts of the same person. The Faster RCNN architecture is used to extract the person 
bounding boxes from the image. So this paper is using a top-down approach. Then for each person, 
ZoomNet first extracts some features from the image, then detects the body key points , then, based 
on the position of the hands and head, zooms in to detect the hand and the face key points . Hence, it 
has 4 parts (subnets): FeatureNet, BodyNet, FaceHead, HandHead. BodyNet uses HRNet-W32 as 
backbone, while the heads for face and hand use HRNetV2p-W18 as backbone. The authors point out 
several factors that influence the accuracy of the system. Using ground truth (GT) bounding boxes for 
the persons, the accuracy improved by 23.6%. Medium scale persons yield better results than large 
scale persons, because the accuracy is measured relative to the person size. 

Key point Communities [4] detects key points  not only on persons, but also on objects (e.g. cars). 
The method is based on the concept of community. It builds a bottom-up graph of key points  and uses 
a connectivity measure to group them by person or object. The key points  are assigned weights 
according to their importance relative to an ego graph. Groups of key points  can be important, even if 
the individual key points  within the group are not so important. The ego graphs are based on the 
euclidean distance between pairs of key points . The method uses the concept of graph centrality that 
gives importance to the more central nodes of the graph, like in the case of a social network. The 
backbone is ShuffleNetV2. Ablations are performed with respect to the key pointweighting method. 

HR Pose [5] focuses on learning high-resolution representations even in the deepest levels of the 
convolutional neural network. To this end, the network keeps the big feature maps until the end, but in 
parallel also adds 3 more series of smaller feature maps, which repeatedly receive information from the 
biggest feature maps through fusions. Each series of feature maps has the same width throughout, 
which is half the width of the previous series maps. High-to-low fusions are strided convolutions, while 
low-to-high fusions are realized through up-sampling. The network regresses a heat map for each 
keypoint. The authors experimented with two architecture sizes: HRNet-W32 with feature map widths 
of 256, 128, 64 and 32, and HRNet-W48 with feature map widths of 384, 192, 96 and 48. The method 
was trained and evaluated separately on MPII and COCO datasets. 

HPR Net [6] is a bottom-up method that detects all the 133 key points  in the COCO-WholeBody 
dataset in a single shot. It addresses the scale issue of the different body parts by building a point 
representation of body parts and then regressing them all at once. The face key points  are regressed 
relative to the center of the face and similarly, the hand key points  relative to the hand center. Tipically 
for bottom-up methods, the time consumed is constant: it does not depend on the number of persons in 
the image. After an Hourglass-104 backbone that extracts the shared features, the network has 7 
heads, one for each of the person center heatmap, person center correction, person box, body key 
pointheatmaps, body key pointoffsets, hand key pointoffsets, and face key pointoffsets. 

Open Pose[7] is a bottom-up method that learns to associate body parts to persons in a greedy 
manner, thus being able to perform the computations in real time. The key pointlocations and their 
associations are learned simultaneously by the two branches of the network. Key pointlocations are 
predicted as heat maps, while the association between key points  is represented as vector fields, 
which help decide which key points  are connected and thus construct a skeleton for each person in 
the image. The network has several stages, each stage taking as input the output of the previous one, 
concatenated to the image features. The field of affinities is defined on a limb (the segment between 
two connected key points ) as unit vectors with direction along the limb. The field takes zero values 
elsewhere. In terms of speed, this method achieved 8.8 fps (frames per second) on a video with 19 
persons. 

Soft-Gated Skip Connections [8] (SGSC) proposes gated skip connections with learnable 
parameters for each channel, instead of the usual plain skip connections, a mechanism meant to 
control the data flow through each channel. In addition, the authors use a hybrid network constructed 
by combining a heavier Hourglass and a lighter U-Net architecture, achieving the same performance as 
the heavy Hourglass but with 3 times fewer parameters. Regarding the skip connections, this method 
proposes two novelties. First, the gate per se is represented by a special module composed of three 
convolutions. Second, the encoder features are merged into the decoder by concatenations instead of 
summation. 

Cascade Feature Aggregation [9] (CFA) proposes a deep neural network composed of multiple 
Hourglass stages with abundant feature aggregations and fusions between stages, meant to improve 
the key point localization, but also to make the network robust to unusual poses, occlusions and low 
resolution images. Final prediction is averaged across the predictions (heat maps) of each stage 
except the first. The typical hourglass architecture is improved by using ResNet blocks in both encoder 
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and decoder. As it is hard to achieve convergence from scratch with random initialization for a network 
like this with more than 3 stages, the authors trained first a 3-stage network and than used the learned 
parameters to initialize the 4

th
 stage, then train the final 4-stage network. 

TransPose [10] uses the Transformer architecture, which is able to reveal the local dependencies that 
the network constructs and uses to predict a certain keypoint. For example, the attention maps of the 
Transformer reveal that predicting the position of an occluded left ankle depends on the left knee and 
left hip, but also on the right ankle and right knee positions. These dependencies are image-specific. 
The network starts with some convolutional blocks (the backbone), followed by three attention stages. 
For the preliminary convolutional blocks, it uses only the first part of HRNet, accounting for a small 
fraction of their total number of parameters. The subsequent attention stages are implemented by 
standard Transformer encoders. A head is appended to predict the key pointheat maps. 

UniPose [11] achieves human pose estimation in a single stage, incorporating contextual 
segmentation and joint localization. It uses a waterfall architecture for progressive filtering and in the 
same time keeps the multi-scale receptive field typical for pyramidal configurations.The network has a 
ResNet-101 backbone, followed by a WASP (waterfall atrous spatial pooling) module, followed by a 
decoder that outputs heat maps for the key points . Dilated (atrous) convolutions increase the receptive 
field while avoiding downsampling.This network also has an extension, UniPose-LSTM, dedicated to 
pose estimation from video sequences. The LSTM module is placed after the UniPose network and 
predicts another set of heat maps for the key pointlocations. The LSTM also receives as input its own 
predictions from the previous frame, achieving temporal consistency. 

Multi-Stage Pose Network[12] (MSPN) proposes a multi-stage design, cross-stage aggregation of the 
features, and coarse-to-fine supervision. The network is composed of 8 feature pyramids grouped in 
4stages. In each stage, the first pyramid is series of 4 downscaling layers, while the second is a 
sequence of 4 upscaling layers, informed by the corresponding layers from the first pyramid. The 
output of the top-most layer of the second pyramid in the first stage is the input for the first pyramid in 
the second stage. Feature aggregation between stages is preceded by 1x1 convolutions. Each layer 
contributes to the prediction. 

Spatial Context Network [13] (SCN) uses contextual information in two different ways. Cascade 
Prediction Fusion (CPF) is a technique that accumulates prediction from the previous stage and guides 
the prediction of the following stage. Pose Graph Neural Network (PGNN) captures the relations 
between human joints as a graph, with messages passing through the graph edges, between 
connected joints. Ambiguities in key pointlocations from earlier stages are gradually resolved in later 
stages. CPF comes first, and its predictions are refined by PGNN. The body model includes not only 
skeleton-based connections, but also some long-distance connections (e.g. between ankle and hip). 
The backbone is an 8-stack Hourglass. Ablation studies show 0.4 metric points improvement when 
adding CPF over the backbone baseline and a further 0.8 points when also adding PGNN. 

OmniPose [14] is an improvement on UniPose [11], by the same authors. It uses multi-scale feature 
representations which incorporates contextual information through the innovative Waterfall module, 
which uses a large receptive field while keeping the high resolution of the feature maps. Also, the 
WASP module from [11] now acts also as a decoder, reducing the network complexity. The backbone 
is a modified 3-stage HRNet, where deconvolutions with Gaussian heat maps modulations replace the 
standard upsampling. Separable convolutions are used to reduce the number of parameters. 

Adversarial Data Augmentation [15] (ADA) is a technique meant to unify data augmentation and 
training in the same process, using a generative adversarial network (GAN). The generator produces 
progressively harder augmentations trying to fool the discriminator, which in turn makes progressively 
accurate predictions. The two components are jointly trained. The training network (the discriminator) is 
U-Net shaped and decides between standard and generated augmentations, according to a typical 
HPE loss function. The augmentation network (the generator) is informed by the encoding part of the 
discriminator’s U-Net and outputs distributions of mixed Gaussians, from which scaling and rotations 
are sampled. Occlusions are generated in the U-Net at the smallest scale. 

Pyramid Residual Modules [16] (PRMs) learn convolutional filters on various scales of the input 
features, aiming to better detect the key points  in unusual poses or in foreshortened body parts, where 
the relative scale of certain parts to the others is rather uncommon.The network is composed of stack 
Hourglass modules, preceded by PRMs. Each PRM has a branch for each scale and the features on 
each branch are downscaled and then upscaled. In addition, the authors note that Xavier initialization 
leads to increasing variance in the multi-branch networks, so they lay out a theoretical basis for a new 
type of initialization for such networks. 

LSTM Pose Machines [17] (LSTM PM) is designed to estimate human pose in video sequences. 
Specific challenges are the consistency from frame to frame that can cause flickering, as well as the 
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low quality of some frames, due to motion blur. The authors note that a multi-stage convolutional neural 
network (CNN) with sharing weights can be rewritten as a recurrent neural network (RNN), which is 
well suited for the task. Long Short-Term Memory (LSTM) units are inserted between the frames to 
ensure temporal geometric consistency. The optimal number of LSTM iterations is found to be 5, 
corresponding to the number of past frames that are still useful for the current frame prediction. 

Thin-Slicing Network [18] (TSN) targets video sequences and uses a body model as prior knowledge, 
in order to ensure temporal consistency. The network can represent both the appearance and the 
spatio-temporal relationship between the key points . It takes several consecutive frames as input and 
predicts initial key pointlocations, while also computing the dense optical flow between the frames. 
Then a spatio-temporal layer passes messages iteratively through the edges of a loopy graph 
representing a spatio-temporal view of the body model, yielding the final predictions. For example, the 
right ankle from the current frame is linked with the right knee from the current frame, but also with the 
right ankle from the previous frame. 

DarkPose [19] relies on extracting the right key pointlocation from the predicted heat map, as well as 
the encoding of the GTs as heat maps. Usually the heat maps are predicted at a lower resolution than 
the original and they have to be scaled back. It is also supposed that the heatmaps would have near-
Gaussian shape, but the authors found that this is often not the case. So they first modulate the low 
resolution heat maps through a convolution with a Gaussian kernel. On the other hand, the GT 
encoding suffers from quantization error, when the heat map is generated after the image is scaled 
down. So the authors renounced the quantization altogether. Best results are achieved with an HRNet 
backbone. This method still works fairly well for low resolution inputs, for with a much reduced network 
complexity is needed, so it can be very fast. 

Cascaded Pyramid Network [20] (CPN)is a top-down approach that, after person bounding box 
detection, has two stages, called GlobalNet and RefineNet. GlobalNet is a feature pyramid that detects 
the easier key points , but struggles with the harder one, affected by occlusion or difficult background. 
RefineNet integrates the feature representation from the first stage and uses hard key pointmining to 
give more weight in the loss to the harder key points . The authors also investigate different non-
maximum suppression (NMS) thresholds for the bounding box detection, and find that Soft-NMS is the 
best choice. Also, as backbone, Resnet-50 is found to be superior to 8-stage Hourglass. In addition, 
ensemble models give the best results. 

OpenPifPaf [21] proposes a bottom-up, single-stage network for real-time key pointdetection and 
tracking, applicable not only to persons, but also to cars and animals, with direct applicability to self-
driving cars and delivery robots. It defines a spatio-temporal pose as a graph spanning multiple frames. 
Composite Intensity Fields (CIF) are confidence maps that reach maximal values in the vicinity of key 
pointlocations. Composite Association Fields (CAF) regress the locations of source and target joints, 
for each limb and for each point in the image, and also the size of each joint. The network can be 
trained jointly on multiple datasets. At training time, the input is several consecutive frames, while at 
inference time an additional layer is inserted that merge the features cached from the previous frame 
into the current features. The body model has redundant connections, which helps with the occluded 
joints or sparse pose, where the visible body parts of a person are not direct neighbors. 

Pose Residual Network [22] (PRN) is a bottom-up method that simultaneously handles key 
pointdetection, person detection and semantic segmentation. After the ResNet-101 backbone, the 
network splits in two branches, the key pointsubnet and the person subnet, the latter predicting 
bounding boxes, as well as segmentation. The two branches are then rejoinedby the final module, the 
actual PRN, which groups the key points  by person. The key pointsubnet is composed of three 
successive feature pyramids. 

IV. SUMMARY OF THE TECHNIQUES 

Most methods use an established backbone, sometimes in a slightly modified version, or taking only 
the relevant portion of it. Some methods use entirely custom built networks. The most common 
backbones are Hourglass, HRNet, ResNet and ShuffleNet. Hourglass is used by 6 methods ([6], [8], 
[9], [13], [15], [16]) and was first introduced as U-Net [23]. It shrinks progressively the input while 
encoding it, then the feature maps are enlarged back to original size in a symmetric manner.For the 
HPE task, there are usually many (8) Hourglass modules stacked back to back. HRNet [24] is used by 
5 methods ([3], [5], [10], [14], [19]). It has 4 stages, from the first stage that contains feature maps only 
at the input resolution, to the last stage that contains feature maps at 4 different resolutions.ResNet 
[25] is used by 4 methods ([11], [12], [20], [22]) and it was the first to use residual (skip) connections to 
address the issue of vanishing gradients in deep networks.ShuffleNet [26] is used by 2 methods ([4], 
[21]). It uses group convolutions and channel shuffle to reduce the computational cost of the network. 

The techniques used by the most successful methods can be summarized as follows: 
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 Multi-branch networks or subnets:[7], [16], [22] 

 Averaging the predictions from several stages: [9], [12], [13] 

 Graph neural network to emulate relationships between key points : [13], [18], [21] 

 Body model: [3], [18] 

 Vector fields for key pointaffinity: [7], [21] 

 Feature aggregation between stages: [9], [12] 

 WASP module for progressive filtering: [11], [14] 

 LSTM for temporal processing: [11], [17] 

 Gaussian heat map modulations for upscaling features [14] and predictions [19] 

 Groups of key points : [4] 

 Training progressively the multi-stage network: [9] 

 Transformer as attention module: [10] 

 GAN to generate hard augmentations during training: [15] 

 Weight initialization specific to multi-branch networks: [16] 

 Optical flow between frames: [18] 

 Hard key pointmining: [20] 

 Soft-NMS [27] to choose the person bounding box: [20] 

 Semantic segmentation head: [22] 

V. METRICS AND EVALUATION 

The metric for the COCO dataset [28] is mean average precision (mAP), i.e. the mean over all classes 
(key pointtypes) of the average over all recall thresholds of the precisions of each keypoint. Object Key 
pointSimilarity (OKS) is used to measure the similarity between the prediction and the GT and it 
depends on the Euclidean distance between prediction and GT, the scale of the human body and the 
standard deviation of the human GT annotations. 

The metric for LSP and UPenn datasets [29] is the probability of correct key point(PCK), which 
depends on the Euclidean distance between prediction and GT and the size of the person bounding 
box. The metric for MPII dataset (PCKh) [30] is a variant of PCK which depends on the size of the 
person’s head, instead of its whole body size. 

Table II shows the evaluation scores of the methods presented above. All times are obtained by the 
authors on an Nvidia GTX 1080 Ti GPU. Scores marked with asterisk (*) are obtained by training on 
additional data. Methods marked with a plus sign (+) were using an ensemble of models. Method 
complexity is expressed in GFlops (floating-point operations) and it depends on the network input size, 
hence on the dataset, therefore an interval is given for methods evaluated on multiple datasets. Time 
and complexity should be proportional. 

TABLE II.  EVALUATION OF HPE METHODS 

Method Backbone 
Complexity 

[GFlops] 

Time 

[ms] 

mAP on 

COCO 

PCKh@0.5 

on MPII 

PCK on 

LSP 

PCK@0.2 

on UPenn 

DarkPose HRNet-W48 32.9 N/A 77.4 - - - 

OmniPose custom HRNet 22.6-37.9 N/A 76.4 - 99.5 99.4 

ZoomNet HRNet-W32 27.36 175 74.3 - - - 

CPN+ ResNet-50 13.9 N/A 73.0 - - - 

OpenPifPaf ShuffleNetV2K30 N/A 152 70.9 - - - 

PRN ResNet-101 N/A N/A 69.7 - - - 

KC ShuffleNetV2 N/A 93 69.6 - - - 

SGSC custom Hourglass 9.9 N/A - 94.1* 94.8 - 
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Method Backbone 
Complexity 

[GFlops] 
Time 
[ms] 

mAP on 
COCO 

PCKh@0.5 
on MPII 

PCK on 
LSP 

PCK@0.2 
on UPenn 

CFA custom Hourglass 73 N/A - 93.9* - - 

TransPose reduced HRNet 21.8 27 - 93.5* - - 

UniPose ResNet-101 N/A N/A - 92.7 94.5 99.3 

MSPN 4x ResNet-50 19.9 N/A - 92.6 - - 

SCN 8x Hourglass N/A N/A - 92.5 94.0 - 

HRPose HRNet 9.5-32.9 N/A 65.9 92.3 - - 

PRMs 8x Hourglass 14.7 N/A - 92.0 93.9 - 

ADA GAN with U-Net N/A N/A - 91.5 94.5 - 

HPRNet Hourglass-104 N/A 101 59.4 - - - 

OpenPose custom N/A 100 56.3 88.8 - - 

LSTM PM custom N/A N/A - - - 97.7 

TSN custom N/A N/A - - - 96.5 

VI. CONCLUSIONS 

State-of-the-art HPE methods all use deep neural networks, but a great variety of techniques. Most 
networks are pretty heavy and cannot be expected to run in real time, but some of them have lighter 
versions designed with speed in mind, while not compromising the accuracy too much. Top-down 
methods tend to perform better but are slower then bottom-up methods. Increasing the efficiency to 
make the methods more practical should be an important objective. 

While very good results were obtained in most of the cases, there still remain challenges like unusual 
poses, occlusions, crowded people and low resolution images, or motion blur in the case of video 
sequences. In spite of this, some of the datasets have almost been saturated (see the high scores on 
LSP and UPenn), so maybe there is a need for a new, more difficult dataset. Synthetic data has not 
been used much and there is a virtually unlimited amount that can be generated, although it will bring 
the problem of domain adaptation. 
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