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Motion parameters of the human body can be powerful indicators for that person’s activity, 

psychological or emotional state. As 3D coordinates of human body parts are often hard to collect, we 

propose a set of methods that take as input 2D video frames from an ordinary RGB camera. While 

this is obviously a limitation, we devised several ways to mitigate it and consequently extract useful 

information from the input video. We define 9 motion parameters that describe in various ways the 

person’s motion: expansion, fluidity, characteristic energy, vivacity, symmetry, twist, dynamism, 

directness and periodicity. We believe this is a step into a better understanding of human motion, and 

can think of several direct applications. 
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I.  INTRODUCTION 

Estimating human motion parameters has long been a subject of interest. Previous works have 

addressed the task from various directions, using various input data and trying to capture as much as 

possible the essence of the human motion. 

One of the first attempts to analyze human motion [1] met the challenge of anatomical data gathering 

and obtained the weight and center of gravity position for various body parts using corpses. Voluntary 

motion of intermediate speed was found [2] to approach the smoothest trajectory, in terms of 

acceleration’s rate of change (jerk), being motivated by neuro-muscular considerations. The study of 

the voluntary arm motion coordination [3] showed that the trajectory yielding the best performance can 

be determined by the dynamic optimization theory and minimizes the square magnitude of the jerk. The 

role of gestures in the non-verbal communication process [4] is explored in relation with dance and 

music as ideal conveyors of expressive and emotional content. The influence of basic emotions, 

happiness and sadness, on a person’s dance [5] revealed differences in the body motion which were 

captured through motion parameters. 3D motion data captured with a RGB-D sensor was used to 

extract motion features and parameters [6], serving for human emotion recognition. 

Our contributions are the following: 

 New method of 2D trajectory smoothing, aimed at reducing the square of the jerks, without using 

predefined intermediary points and keeping the overall trajectory shape (no curve flattening) 

 Definition of 9 motion parameters, extractable from 2D coordinates: expansion, fluidity, 

characteristic energy, vivacity, symmetry, twist, dynamism, directness and periodicity; although a few of 

them have been defined before in the 3D case, we adapted those definitions to the 2D case, which is 

more common  
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II.   PRELIMINARIES 

We use a Web camera to capture 17 video sequences. In each video, the same person is performing a 

dance in a particular dance style (Ballet, Freestyler, Macarena, Lambada and others). We used a wide 

variety of dance styles to be able to compare the motion parameters between them and draw 

conclusions about the particular features of each dance style. All videos are recorded at 30 frames per 

second and have 2000 frames, or roughly 66 seconds in length. To obtain the positions of the body 

joints, we use Open Pose [7], which is a method based on a deep neural network and has shown some 

of the best results for this task. It predicts 14 joints: head top, neck, shoulders, elbows, wrists, hips, 

knees and ankles. In fig. 1, we marked the predicted joints and the limbs obtained by connecting them. 

 

Fig. 1 Joints detected by OpenPose and limbs between them 

For some images, skeleton detection can produce more than one skeleton. We are only interested in a 

single skeleton, so the first step is to filter out the unwanted skeletons. We first ensure that we have 

only one skeleton in the first frame of every video. Then for each frame with multiple skeletons, we 

compute the sum of distances from each joint to the corresponding joint of the skeleton in the previous 

frame and we keep the skeleton with the smallest sum. In other words, we keep the skeleton spatially 

closest to the unique skeleton in the previous frame. 

III.   TRAJECTORY SMOOTHING 

The detection of joints faces a large array of difficult cases. Body part similarity can lead to confusion 

between left and right limbs. The fast motion of the person can blur the joints and therefore make the 

joint position unclear. Hidden joints are harder to estimate. All these cases yield perturbations in the 

series of joint positions. 

The simplest method to smooth a data series is the moving average. This method replaces each value 

in the series with the average over an interval around that value. The filter Savitzky-Golay [8] is a 

generalization of the moving average that obtains the filter coefficients using a polynomial for a linear 

least squares fit of the data. Local Regresion Smoothing [9] uses locally weighted scatter plots with 

polynomial of first or second degree. 

We smooth the joint trajectories by reducing the instantaneous acceleration. Our method is based on 

the actual meaning of the data. Body joints that describe the trajectories are physically constrained by 

the body muscles which cannot make too sharp changes in speed, so when smoothing we aim at 

minimizing the joint accelerations. In fig. 2, we represent a fragment from a joint trajectory. Let A, B, C, 

D, E be the joint positions in succesive frames. Let C’, D’, E’ be the reflections of A with respect to B, of 

B with respect to C, and of C with respect to D, respectively. C’, D’, E’ are the expected positions for C, 

D, E under uniform motion. In the physical interpretation, AB, BC, CD and DE are the velocities of the 

joint between two consecutive frames, while C’C, D’D and E’E are the accelerations of the joint in the 

points C, D and E respectively. In order to smooth the trajectory in the current point C, we move this 

point towards C’, thus reducing the acceleration. This move also has the desired effects of a change in 

the position of D’ twice as big towards D, and a change in the position of E’ towards E. We continue to 

move C towards C’, as long as the sum of squares of the accelerations decreases. If C reaches C’, we 
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stop and continue the same procedure for the next point D, taking into account the accelerations D’D, 

E’E and F’F. 

 

Fig. 2 Trajectory smoothing. Crosses represent joint positions, circles represent positions that would 

cancel the acceleration for each 3-point segment. Moving point C would change the positions of D’ and E’ 

in the desired directions, thus reducing the sum of squares of the accelerations 

In fig. 3, we represented a practical example of trajectory smoothing. The series of accelerations is 

represented on the first row, and values obtained after smoothing, under the bars. The method 

gradually updates the values, in groups of 3. 

 

Fig. 3 Trajectory smoothing. The first row represents the successive accelerations of a joint. Below the 

bars, there are the smoothed accelerations. The sum of squares of all the accelerations goes down from 

327 to 57, while the sum of their absolute values decreases from 67 to 25. 

In fig. 4, we present a real case scenario, where the trajectory of the right wrist was smoothed. It can 

be seen that motion blur affects the detection, but trajectory smoothing follows more naturally the 

motion of the wrist. 

 

Fig. 4 Trajectory smoothing. The detected right wrist (left side of the image) is represented by a black dot, 

while the smoothed trajectory positions are represented by a red dot. The dots are overlapping in the 

initial and final positions, while there is significant distance between them in the frames in-between. 
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IV.  THE MOTION PARAMETERS 

Expansion, a parameter describing the quality of the motion, was previously defined [5] between 

wrists and elbows, on one hand, and the body center, on the other hand. We adapted this definition to 

our 2D data, also taking into account the variation of the distance between person and camera. We 

normalized the values obtained for the expansion and integrated them over an interval of several 

seconds, to cancel out the momentary variations. Let A be the wrist, B – the elbow, C – the shoulder, 

and D – the hip on the same side of the body. We compute the expansion as: 

          (1) 

As can be deduced from the formula, the expansion takes values in [0, 1]. When the wrist touches the 

hip, the expansion is 0. When the arm is extended upwards and all four joints (hip, shoulder, elbow and 

wrist) are collinear, the expansion is 1. In order to reduce the errors due to foreshortening of limbs in 

the projection plane, we compute this parameter for the left side of the body, as well as for the right 

side, and take the expansion of the body to be the maximum of the two. In fig. 5, we represented the 

expansion extracted from three different dances: Ballet, Freestyler and Macarena. The graph shows 

that, although there is variation within each dance, the Ballet expansion is generally the highest, while 

the Freestyler expansion is the lowest and has the smallest variance. Also, within one dance style, 

there are periods of relatively constant expansion, reflecting specific dance routines. This can best be 

observed in the Ballet graph, which has roughly 3 such periods, the first with a high expansion, the 

second with lower expansion, and the third with very high expansion. 

 

Fig. 5 The expansion of the body during three different dance styles, as a function of time. Each moment 

of time is a video frame. 

Some motion parameters describe well a certain part of the motion. When we talk about wide gestures 

or a fluid motion, we mean not just spatial extent, but also temporal, i.e. the time interval (number of 

frames) during which that gesture (motion segment) takes place. We define the anchors of a motion 

as the points where the trajectory of a joint either stop, or perform a sudden direction change, of at 

least 90⁰ . The motion anchors split the joint trajectory in motion segments, characterized by a certain 

motion continuity. During a motion segment, the direction can change by any amount, but not 

suddenly. A motion segment can have any length, defined as the number of frames between the final 

anchor and the initial anchor. Fig. 6 shows a joint trajectory during 16 frames and has the motion 

anchors painted red. 

E=
AD

AB+BC+CD
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Fig. 6 The trajectory of a joint during 16 frames. The motion anchors are represented in red, defining 5 

motion segments, between the frames 1-7, 7-9, 9-10, 10-12 and 12-16. Each motion anchor marks a change 

in direction of more than 90⁰ . 

A motion is fluid if it has only small instantaneous changes in acceleration, called jerks. Because the 

motion as a whole has inherent jerks at the anchors, we analyze the fluidity during the motion 

segments, as a property of each segment. For a rectilinear motion between two points, the position of 

intermediary points that minimize the jerk can be computed, given the initial and final velocities and 

accelerations are zero. [2] But for a multidimensional motion, the formula can be applied only with the 

additional condition that the trajectory passes through a certain point at a certain moment [3], which 

makes it lose its generality. In our situation, we don’t have mandatory intermediary points, and without 

them, the trajectory that minimizes the jerk between any two points would be the straight line between 

them. So we cannot minimize the jerk without reducing the trajectory to a straight line. 

The fluidity index was defined in [6] as the inverse of the jerk, integrated over the length of the motion 

segment. For the discrete case of the pixel-level trajectory, this formula yields too small values, 

because the smallest non-zero jerk is 1, for which it would result a fluidity index of 0.5, too small for a 

small jerk. Thus, we define the fluidity as the square root of the inverse of the average jerk of a motion 

segment, scaled to take values in [0, 1]. 

           (2)

 

It approaches zero when the jerk is very high. It is equal to 1 when the jerk is equal to 0. As the jerk 

depends on the joint position in 4 consecutive frames, the fluidity can only describe motion segments of 

length at least 3. Fig. 7 shows the average lengths of the motion segments of each joint, for three 

selected dance videos. The head and arm joints in the ballet video have much longer motion 

segments, reflecting the wider and slower gestures, especially of the upper body parts. 

 

Fig. 7 Average lengths of the motion segments for three dance videos, expressed in number of frames 

Fig. 8 shows the average fluidity of three dance videos. It can be seen that Ballet is the most fluid 

dance, while Freestyler is the least fluid. The graph also shows a relative pattern in the fluidity of the 

joints. The wrists are the least fluid of all joints, because they can move more freely and thus more 

F=
1

√̄j+1
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sudden than the other body joints, which are stronger connected and thus have more motion 

constraints and fewer degrees of freedom. In fact, there is a decrease in fluidity from shoulder to elbow 

to wrist. Also, the head top is slightly less fluid than the neck, while the lower body joints have similar 

fluidity during the same dance style. 

 

Fig. 8 Fluidity of the motion segments for three dance videos 

Fig. 9 shows the fluidity as a function of the motion segment length. The analyzed joint is the right hip 

from the Ballet video, which has an average fluidity of about 0.6, as it can be seen in fig. 8. Each blue 

circle represents a motion segment. While the motion segments can vary in length from 3 to 48, shorter 

lengths, in the range [3, 7], are better represented than longer ones, which was expected. Also, the 

shorter motion segments have more fluidity variance. The red asterisks mark the average fluidity for 

each motion segment length. These highlight the fact that the fluidity of a certain joint in a certain 

dance style does not depend on the motion segment length: in this case, they are all close to 0.6, the 

global average. 

 

Fig. 9 Fluidity as a function of motion segment length. Each segment is represented by a blue circle, while 

each red asterisk represents the average fluidity of segments of the same length. 

The joints define the body parts that connect them: trunk (quadrilateral defined by shoulders and hips), 

head, upper arms, forearms, thighs, calves. The kinetic energy of a body articulated from rigid parts is 

the sum of the kinetic energies of its parts. We don’t know the mass of the person in question, but we 

can compute its characteristic energy (energy per mass unit). We need to know the fraction of each 

body part of the total body mass, as well as the position of the center of gravity of each body part 

relative to one of its extremities. We used the average values computed from a sample of 135 corpses 
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(35 males and 100 females). [1] Since we only have 2D coordinates, we are only computing the 

projection of the total characteristic energy on the projection plane. We use this formula for the 

characteristic energy: 

          (3) 

where E – translational kinetic energy, m – body mass, p – body part, mp – mass of the body part, vp – 

velocity of the body part. 

The velocity of a body part acts in its center of gravity and can be computed from the velocities of the 

joints at the extremities of the body part. For the trunk, we take the extreme points as the middle of the 

shoulder line and the middle of the hip line. 

        (4)

 

where vp1, vp2 – velocities of the body part extremities, G – position of the center of gravity of the body 

part, P1, P2 – positions of the extremities of the body part. 

Similar to the characteristic energy, we compute the vivacity or characteristic moment (moment per 

mass unit). The moment of the whole body is the sum of the moments of all the component parts. 

Since we only have 2D coordinates, we are only computing the projection of the total vivacity on the 

projection plane. We use this formula for the vivacity: 

          (5)

 

where p – moment, m – body mass, i – body part, mi – mass of the body part, vi – velocity of the body 

part. 

The symmetry of the motion can be approached in several ways. To compute it relative to the section 

planes of the human body (frontal, sagittal and transversal), as in [6], we need the 3D joint coordinates. 

Of the 2D coordinates we have, the vertical coordinate is invariant to the predominant rotation of a 

person relative to the camera (in the horizontal plane), while the horizontal coordinate is heavily 

affected by this rotation. Therefore, we only take into account the vertical coordinate to compute the 

symmetry. A symmetric motion can be simultaneous, but it can also be alternating. For example, for an 

alternating raise of the hands, most of the frames contain asymmetric positions, although the motion as 

a whole can be considered symmetric. We define the relative height of the wrist with respect to the 

shoulder on the same side, as: 

          (6)

 

where A, B, C – positions of the shoulder, elbow and wrist, respectively, yA, yC – vertical coordinates of 

the shoulder and wrist (measured from the upper side of the image). 

The relative height takes values in [0, 1]. When the arm hangs perfectly downwards, AB + BC = yC - yA, 

therefore hrel = 0. When the arm is stretched perfectly upwards, AB + BC = yA - yC, therefore hrel = 1. 

And when the whole arm is on the same horizontal with the shoulder, either stretched or flexed, yA = 

yC, therefore hrel = 0.5. Integrating the left and right relative heights over several frames, to take into 

account the alternating motions, we obtain Hrel(L) and Hrel(R). The closest the integrated relative 

heights are, the more symmetric the motion. So we use this formula for the symmetry: 

S = 1 - |Hrel(L) – Hrel(R)|          (7) 

v⃗ p= v⃗ p1
+( v⃗ p2

− v⃗ p1
)∗ (

G− P1

P2− P1

)

π=
p

m
= ∑

i

(
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m
∗ v i)
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y A− yC

AB+BC
+1
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We compute the symmetries of the ankles in the same manner, using hips and knees instead of 

shoulders and elbows. Fig. 10 represents the symmetries computed for two dance styles, Ballet and 

Freestyler. Relative heights were integrated over 150 frames (5 seconds). The graphs show that wrist 

symmetry is greater for the Freestyler dance (over 92%), while the ankle symmetry is comparable for 

the two dance styles (over 96% in both cases). In general, ankle symmetry will always be close to 1 if 

both ankles stay mostly close to the ground. 

 

Fig. 10 Symmetries of wrists (blue) and ankles (red) computed from two dance videos, Ballet (a) and 

Freestyler (b). Note the different vertical scales 

We define three types of tilts: head tilt relative to the trunk (in the range [0, 90] degrees), trunk tilt 

relative to the vertical (in the range [0, 180] degrees) and hips tilt relative to horizontal (in the range [0, 

90] degrees). These parameters combined can offer hints about the overall body twist. The head 

direction is the line between the head top and the neck. The trunk is the quadrilateral defined by the 

shoulders and hips and its direction runs from the middle of the shoulder line to the middle of the hip 

line. Due to limits imposed by the 2D projection, we can only compute these values in the projection 

plane. Foreshortenings of the limbs on the axis person-camera can affect the tilts, the hip line being 

especially susceptible of abnormal high tilts when the person is viewed from the side and the horizontal 

hip coordinates almost coincide. Therefore, when computing the overall body twist, we weight the hips 

tilt by the ratio of the hip line length to the maximum hip line length over the last few seconds. With this 

precaution, the formula for the twist is: 

T = (t1 / 90 + t2 / 180 + t3 * dh / Dh / 90) / 3        (8) 

where t1, t2, t3 – head tilt, trunk tilt, hips tilt, respectively, dh – distance between the hips, Dh – maximal 

distance between the hips over the last few seconds. 

All tilts are scaled to their respective range, to bring the overall body twist in [0, 1]. A person in a 

upward vertical position has all the tilts equal to 0, so the twist is also 0. A person performing a 

complicated break dance move, with the trunk upside-down, and with the head and hips tilted at 90 

degrees relative to the trunk would have all tilts equal to their respective maximal angles, and the twist 

equal to 1. 

Often a person, during an activity (dance or other), changes her/his support leg and moves her/his 

center of gravity from one leg to another, passing through poses where the equilibrium is dynamic. We 

define the dynamism as the degree of instability of a certain pose. It depends on the horizontal 

distance between the center of gravity and the edge of the support base, as well as on distance that 

the free leg has to cover in order to recover the stable equilibrium. In the context of our data (2D 

coordinates of the body joints), we consider the ankles as the points of support. Also, the ankles will 

rarely have the same vertical coordinate, so almost always it will appear to be a single point of support, 

the lowest ankle. When, in reality, the person has both legs on the ground and the center of gravity falls 
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between them, the highest ankle will appear close to the height of the support ankle and therefore will 

have to cover only a small distance to recover the apparent stable equilibrium. 

Fig. 11 shows the three possible situations that can arise with respect to the relative positions of the 

center of gravity (G) and the two ankles, inferior (J) and superior (S): G falls on the side of the J, G falls 

between J and S, G falls on the side of S. Let G’ and S’ be the projections of G and S on the horizontal 

line that passes through J. 

 

Fig. 11 The three cases that can occur with respect to the horizontal position of the center of gravity (G) 

relative to the inferior (J) and superior (S) ankles. G’ and S’ are the projections of G and S on the 

horizontal of J 

We define the dynamism as: 

       (9)

 

The case when G falls between J and S (G’ is between J and S’) is represented in the central panel of 

fig. 11 and S needs only to move to S’ to reach the stable equilibrium. Otherwise, G falls outside of the 

segment JS’ and S needs to move to G’ to reestablish the stable equilibrium, as the lateral panels of 

fig. 11 show. If G’ = S’, the two branches of the formula become identical. If G’ = J, then D = 0, because 

the center of gravity is right above the support ankle and the equilibrium is stable. If S = S’ and G’ 

between S and J, then D = 0, because the two ankles are on the same horizontal line and the center of 

gravity falls inside the support base. 

We estimated the center of gravity based on average human data [1] for the mass of each limb relative 

to the total body mass and on the position of the center of gravity of each limb relative to its proximal 

extremity. We computed the dynamism for the dance videos Ballet, Freestyler and Macarena. Because 

dynamism can have very big values in case of bad joint detection, a video sequence is better described 

by the median of dynamism than by its mean. The results are in presented in Table I and match the 

intuitive observations: Macarena style is mostly static, with both feet almost always on the ground, 

Ballet style include legs in the air or jumps from time to time, while Freestyler dance is very dynamic, 

with lots of jumps from one leg to another. 

TABLE I.  DYNAMISM 

Dance 
Median 

Dynamism 

Ballet 154 

Freestyler 320 

Macarena 84 

 

For each motion segment, directness is the ratio between the length of the total displacement and the 

distance covered by the joint during that segment. [4] The formula for directness is: 

d = sum(PiPi+1) / P0Pn          (10) 

D={JG '∗ SS ' if G' between J and S '

JG'∗ SG ' otherwise
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where i – index of frame in the segment, in [0, n-1], Pi – position of joint at frame i. 

Directness belongs to [0, 1]. It is equal to 0 when the segment starts and finishes in the same point and 

it is equal to 1 when the segment is a straight line. For example, in fig. 6, directness of the last motion 

segment is (P12P13 + P13P14 + P14P15 + P15P16) / P12P16. 

Periodicity was analyzed with respect to the frontal, sagittal and transversal planes, given the 3D 

coordinates of the joints. [6] As we only have 2D coordinates, we only take into account the vertical 

motion, which is invariant to the predominant rotation of a person, in the horizontal plane. In fact, 

almost any horizontal motion of a person implies an associated vertical motion, due to the need for a 

support base and to the way the body is articulated. 

We compute the periodicity using the Fourier transform, whose power spectrum highlights the main 

frequencies of a signal. The periods can then be obtained from those main frequencies. To apply the 

Fourier transform on the time-series of the joint coordinates, these need to be normalized first, 

otherwise the maximal value of the power spectrum will correspond to the frequency zero, representing 

the mean of the signal values. In addition, the joint positions are harder to interpret, as they do not 

have a well defined range. Although constrained within the image size, the actual trajectory of a joint is 

hard to predict or evaluate. Instead, we use the instantaneous velocities, equivalent to the differences 

in position from one frame to the next. These have a natural near-zero mean, because the probability 

that the velocity takes positive or negative values is the same, and have a predictable distribution, as 

the small values are dominant and the very big outlier values can be considered detection errors. We 

compute periodicity for each joint, over a certain time window. The window size does not affect the 

outcome, as long as it is not too short to catch the short periods. However, a window too long 

introduces a lag in the reaction time in case of a change in periodicity over time. We found that a 5 

seconds (150 frames at 30 fps) window is appropriate for most purposes. We also perform the 

necessary scaling to express the periodicity in beats per minute, so its formula is: 

           (11)

 

where n – number of frames per second, i – index of the maximal spectral density, N – number of 

frames of the window. 

V.   CONCLUSIONS ADN FURTHER WORK 

We computed 9 human motion parameters: expansion, fluidity, characteristic energy, vivacity, 

symmetry, twist, dynamism, directness and periodicity. Some of them (expansion, dynamism) are 

computed for each individual image, others (fluidity, directness) are computed for each motion 

segment, while the rest need a sequence of two or more video frames. 

As different human activities are likely to be reflected in different overall motion parameters, one could 

discriminate between human activities based on these parameters. As we saw in our analysis, even 

different styles of dance can have very different motion parameters. 

Motion parameters can be a good indicator of a person’s psychological or emotional state. For 

example, big values of energy, vivacity or dynamism can suggest a good state of mind, while small 

values can hint to apathy or bad mood. More research is needed in this area. 

By capturing the motion parameters from a dancing person, one could generate music in real-time that 

is more appropriate to that person’s dance style. For example, the person dances slower than the 

music rhythm, so the music can adapt to that person rhythm. The music can also take into account the 

estimated emotional state of the dancing person, to match it more closely. For example, the music can 

become more energetic or more dynamic or more fluid, depending on those specific parameters. 
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